35 citations to 10.1016/j.cnsns.2017.06.002 (Crossref Cited-By Service)
  1. A. A. Melnikova, N. N. Deryugina, “Existence of a Periodic Solution in the Form of a Two-Dimensional Front in a System of Parabolic Equations”, Diff Equat, 56, № 4, 2020, 462  crossref
  2. S. I. Kabanikhin, I. M. Kulikov, M. A. Shishlenin, “An Algorithm for Recovering the Characteristics of the Initial State of Supernova”, Comput. Math. and Math. Phys., 60, № 6, 2020, 1008  crossref
  3. F. Z. Geng, “Piecewise reproducing kernel-based symmetric collocation approach for linear stationary singularly perturbed problems”, AIMS Mathematics, 5, № 6, 2020, 6020  crossref
  4. N. T. Levashova, N. N. Nefedov, O. A. Nikolaeva, “Asymptotically Stable Stationary Solutions of the Reaction–Diffusion–Advection Equation with Discontinuous Reaction and Advection Terms”, Diff Equat, 56, № 5, 2020, 605  crossref
  5. Dmitriy V. Klyuchinskiy, Nikita S. Novikov, Maxim A. Shishlenin, “CPU-time and RAM memory optimization for solving dynamic inverse problems using gradient-based approach”, Journal of Computational Physics, 439, 2021, 110374  crossref
  6. Dmitry V. Lukyanenko, Igor V. Prigorniy, Maxim A. Shishlenin, “Some features of solving an inverse backward problem for a generalized Burgers’ equation”, Journal of Inverse and Ill-posed Problems, 28, № 5, 2020, 641  crossref
  7. Nikolay Nefedov, Elena Polezhaeva, Natalia Levashova, “Stabilization of the Moving Front Solution of the Reaction-Diffusion-Advection Problem”, Axioms, 12, № 3, 2023, 253  crossref
  8. N. T. Levashova, D. S. Samsonov, “Stability of a stationary solution of a system of activator–inhibitor-type equations with a double-scale internal transition layer”, Theor Math Phys, 215, № 2, 2023, 691  crossref
  9. Anqi Qu, Xue Tong, Jinfeng Wang, “Dynamics of a diffusive mussel-algae system in closed advective environments”, Journal of Differential Equations, 370, 2023, 346  crossref
  10. N. T. Levashova, N. N. Nefedov, O. A. Nikolaeva, “Solution with an inner transition layer of a two-dimensional boundary value reaction–diffusion–advection problem with discontinuous reaction and advection terms”, Theor Math Phys, 207, № 2, 2021, 655  crossref
Предыдущая
1
2
3
4
Следующая