- Andreas Dechant, Eric Lutz, “Anomalous Spatial Diffusion and Multifractality in Optical Lattices”, Phys. Rev. Lett., 108, № 23, 2012, 230601
- U Al Khawaja, M Al-Refai, Gavriil Shchedrin, Lincoln D Carr, “High-accuracy power series solutions with arbitrarily large radius of convergence for the fractional nonlinear Schrödinger-type equations”, J. Phys. A: Math. Theor., 51, № 23, 2018, 235201
- Wojbor A. Woyczyński, Lévy Processes, 2001, 241
- Changhong Guo, Shaomei Fang, “CRANK-NICOLSON DIFFERENCE SCHEME FOR THE DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION WITH THE RIESZ SPACE FRACTIONAL DERIVATIVE”, jaac, 11, № 3, 2021, 1074
- Yong Zhang, David A. Benson, Donald M. Reeves, “Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications”, Advances in Water Resources, 32, № 4, 2009, 561
- Emad Awad, Trifce Sandev, Ralf Metzler, Aleksei Chechkin, “Closed-form multi-dimensional solutions and asymptotic behaviors for subdiffusive processes with crossovers: I. Retarding case”, Chaos, Solitons & Fractals, 152, 2021, 111357
- Gurmej Singh, Praveen Agarwal, Mehar Chand, Shilpi Jain, “Certain fractional kinetic equations involving generalizedk-Bessel function”, Transactions of A. Razmadze Mathematical Institute, 172, № 3, 2018, 559
- Vasily E. Tarasov, George M. Zaslavsky, “Fractional dynamics of coupled oscillators with long-range interaction”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 16, № 2, 2006, 023110
- S. Chen, F. Liu, “ADI-Euler and extrapolation methods for the two-dimensional fractional advection-dispersion equation”, J. Appl. Math. Comput., 26, № 1-2, 2008, 295
- Z. A. Subhonova, A. A. Rahmonov, “Problem of Determining the Time Dependent Coefficient in the Fractional Diffusion-Wave Equation”, Lobachevskii J Math, 42, № 15, 2021, 3747