- G.M. Zaslavsky, P.N. Guzdar, M. Edelnman, M.I. Sitnov, A.S. Sharma, “Multiscale behavior and fractional kinetics from the data of solar wind–magnetosphere coupling”, Communications in Nonlinear Science and Numerical Simulation, 13, № 2, 2008, 314
- Chenzhong Yin, Gaurav Gupta, Paul Bogdan, 12312, Dynamic Data Driven Applications Systems, 2020, 302
- O. Lyubomudrov, M. Edelman, G. M. Zaslavsky, “Pseudochaotic Systems and Their Fractional Kinetics”, Int. J. Mod. Phys. B, 17, № 22n24, 2003, 4149
- Owais Khan, Nabiullah Khan, Dumitru Baleanu, Kottakkaran Sooppy Nisar, “Computable solution of fractional kinetic equations using Mathieu-type series”, Adv Differ Equ, 2019, № 1, 2019, 234
- Haye Hinrichsen, “Non-equilibrium phase transitions with long-range interactions”, J. Stat. Mech., 2007, № 07, 2007, P07006
- A. N. Bondarenko, D. S. Ivaschenko, “Generalized Sommerfeld problem for time fractional diffusion equation: analytical and numerical approach”, Journal of Inverse and Ill-posed Problems, 17, № 4, 2009
- S.H. Rakotonasy, M.C. Néel, M. Joelson, “Characterizing anomalous diffusion by studying displacements”, Communications in Nonlinear Science and Numerical Simulation, 19, № 7, 2014, 2284
- O. V. Chumak, A. S. Rastorguev, “Kinetic properties of fractal stellar media”, Mon. Not. R. Astron. Soc., 464, № 3, 2017, 2777
- Manal Alqhtani, Kolade M. Owolabi, Khaled M. Saad, Edson Pindza, “Efficient numerical techniques for computing the Riesz fractional-order reaction-diffusion models arising in biology”, Chaos, Solitons & Fractals, 161, 2022, 112394
- E. Abad, S. B. Yuste, Katja Lindenberg, “Survival probability of an immobile target in a sea of evanescent diffusive or subdiffusive traps: A fractional equation approach”, Phys. Rev. E, 86, № 6, 2012, 061120