- P. Kostrobij, B. Markovych, O. Viznovych, I. Zelinska, M. Tokarchuk, “Generalized Cattaneo–Maxwell diffusion equation with fractional derivatives. Dispersion relations”, Math. Model. Comput., 6, № 1, 2019, 58
- E. Barkai, R. J. Silbey, “Fractional Kramers Equation”, J. Phys. Chem. B, 104, № 16, 2000, 3866
- Marco Donatelli, Mariarosa Mazza, Stefano Serra-Capizzano, “Spectral Analysis and Multigrid Methods for Finite Volume Approximations of Space-Fractional Diffusion Equations”, SIAM J. Sci. Comput., 40, № 6, 2018, A4007
- Chenkuan Li, Joshua Beaudin, “On the Generalized Riesz Derivative”, Mathematics, 8, № 7, 2020, 1089
- Rudolf Gorenflo, Francesco Mainardi, Daniele Moretti, Gianni Pagnini, Paolo Paradisi, “Discrete random walk models for space–time fractional diffusion”, Chemical Physics, 284, № 1-2, 2002, 521
- S. V. Buldyrev, S. Havlin, A. Ya. Kazakov, M. G. E. da Luz, E. P. Raposo, H. E. Stanley, G. M. Viswanathan, “Average time spent by Lévy flights and walks on an interval with absorbing boundaries”, Phys. Rev. E, 64, № 4, 2001, 041108
- V. Gafiychuk, B. Datsko, V. Meleshko, “Mathematical modeling of time fractional reaction–diffusion systems”, Journal of Computational and Applied Mathematics, 220, № 1-2, 2008, 215
- Nasreen Khan, P. Muthukumar, “Transient Chaos, Synchronization and Digital Image Enhancement Technique Based on a Novel 5D Fractional-Order Hyperchaotic Memristive System”, Circuits Syst Signal Process, 41, № 4, 2022, 2266
- Gianni Pagnini, “Subordination Formulae for Space-time Fractional Diffusion Processes via Mellin Convolution”, International Journal of Mathematical Models and Methods in Applied Sciences, 16, 2022, 71
- A. Helmstetter, D. Sornette, “Diffusion of epicenters of earthquake aftershocks, Omori’s law, and generalized continuous-time random walk models”, Phys. Rev. E, 66, № 6, 2002, 061104