- Katsushi Ito, Christopher Locke, “ODE/IM correspondence and modified affine Toda field equations”, Nuclear Physics B, 885, 2014, 600
- B. A. Kupershmidt, “Families of generalized sine-Gordon fields”, Lett. Nuovo Cimento, 33, № 5, 1982, 137
- Timothy R. Klassen, Ezer Melzer, “The thermodynamics of purely elastic scattering theories and conformal perturbation theory”, Nuclear Physics B, 350, № 3, 1991, 635
- V. S. Gerdjikov, A. Kyuldjiev, G. Marmo, G. Vilasi, “Real Hamiltonian forms of Hamiltonian systems”, Eur. Phys. J. B, 38, № 4, 2004, 635
- Xiaojun Liu, Yunbo Zeng, Runliang Lin, “An extended two-dimensional Toda lattice hierarchy and two-dimensional Toda lattice with self-consistent sources”, Journal of Mathematical Physics, 49, № 9, 2008, 093506
- Andreas Fring, Christian Korff, “Non-crystallographic reduction of generalized Calogero–Moser models”, J. Phys. A: Math. Gen., 39, № 5, 2006, 1115
- S.Pratik Khastgir, “S-matrices and bi-linear sum rules of conserved charges in affine Toda field theories”, Physics Letters B, 451, № 1-2, 1999, 68
- K. Atalikov, A. Zotov, “Gauge Equivalence Between 1 + 1 Rational Calogero–Moser Field Theory and Higher Rank Landau–Lifshitz Equation”, Jetp Lett., 117, № 8, 2023, 630
- Bo-Yu Hou, Liu Chao, Huan-Xiong Yang, “Sine-Gordon and affine Toda fields as non-conformally constrained WZNW model”, Physics Letters B, 266, № 3-4, 1991, 353
- H. W. Braden, H. S. Cho, J. D. Kim, I. G. Koh, R. Sasaki, “Singularity Analysis in An Affine Toda Theories”, Progress of Theoretical Physics, 88, № 6, 1992, 1205