26 citations to 10.1007/s10114-005-0652-z (Crossref Cited-By Service)
  1. Ivan I. Argatov, “Asymptotic models for the topological sensitivity of the energy functional”, Applied Mathematics Letters, 22, № 1, 2009, 19  crossref
  2. Antonio André Novotny, Jan Sokołowski, Antoni Żochowski, “Topological Derivatives of Shape Functionals. Part I: Theory in Singularly Perturbed Geometrical Domains”, J Optim Theory Appl, 180, № 2, 2019, 341  crossref
  3. Ahmed Alsaedi, Bashir Ahmad, Durga Prasad Challa, Mokhtar Kirane, Mourad Sini, “A cluster of many small holes with negative imaginary surface impedances may generate a negative refraction index”, Math Methods in App Sciences, 39, № 13, 2016, 3607  crossref
  4. Maxence Cassier, Christophe Hazard, “Multiple scattering of acoustic waves by small sound-soft obstacles in two dimensions: Mathematical justification of the Foldy–Lax model”, Wave Motion, 50, № 1, 2013, 18  crossref
  5. G. Cardone, S. A. Nazarov, J. Sokolowski, “Asymptotic Analysis, Polarization Matrices, and Topological Derivatives for Piezoelectric Materials with Small Voids”, SIAM J. Control Optim., 48, № 6, 2010, 3925  crossref
  6. Adam Kowalewski, Irena Lasiecka, Jan Sokołowski, “Sensitivity analysis of hyperbolic optimal control problems”, Comput Optim Appl, 52, № 1, 2012, 147  crossref
  7. Alfredo Canelas, Antonio A. Novotny, Jean R. Roche, “A new method for inverse electromagnetic casting problems based on the topological derivative”, Journal of Computational Physics, 230, № 9, 2011, 3570  crossref
  8. S. M. Giusti, A. A. Novotny, J. Sokołowski, “Topological derivative for steady-state orthotropic heat diffusion problem”, Struct Multidisc Optim, 40, № 1-6, 2010, 53  crossref
  9. Mohamed Iguernane, Serguei Nazarov, Jean-Rodolphe Roche, Jan Sokolowski, Katarzyna Szulc, “Topological Derivatives for Semilinear Elliptic Equations”, International Journal of Applied Mathematics and Computer Science, 19, № 2, 2009, 191  crossref
  10. Lucas Chesnel, Xavier Claeys, “A numerical approach for the Poisson equation in a planar domain with a small inclusion”, Bit Numer Math, 56, № 4, 2016, 1237  crossref
1
2
3
Следующая