29 citations to 10.1016/0375-9601(91)91066-M (Crossref Cited-By Service)
  1. S. I. Svinolupov, R. I. Yamilov, “Explicit B�cklund transformations for multifield Schr�dinger equations. Jordan generalizations of the Toda chain”, Theor Math Phys, 98, № 2, 1994, 139  crossref
  2. Fang Jian-Ping, Fei Jin-Xi, Zheng Chun-Long, “New Families of Exact Excitations to (2+1)-Dimensional Toda Lattice System via an Extended Projective Approach”, Commun. Theor. Phys., 45, № 5, 2006, 864  crossref
  3. V.E. Adler, S.I. Svinolupov, R.I. Yamilov, “Multi-component Volterra and Toda type integrable equations”, Physics Letters A, 254, № 1-2, 1999, 24  crossref
  4. S. I. Svinolupov, V. V. Sokolov, “Deformations of triple-Jordan systems and integrable equations”, Theor Math Phys, 108, № 3, 1996, 1160  crossref
  5. Ravil Yamilov, “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39, № 45, 2006, R541  crossref
  6. Wenhua Huang, Yulu Liu, “Jacobi elliptic function solutions of the Ablowitz–Ladik discrete nonlinear Schrödinger system”, Chaos, Solitons & Fractals, 40, № 2, 2009, 786  crossref
  7. R.I. Yamilov, “On the construction of Miura type transformations by others of this kind”, Physics Letters A, 173, № 1, 1993, 53  crossref
  8. Qi Wang, “Application of Rational Expansion Method for Differential-Difference Equation”, Commun. Theor. Phys., 56, № 6, 2011, 981  crossref
  9. Wang Qi, “Application of Homotopy Analysis Method to Solve Relativistic Toda Lattice System”, Commun. Theor. Phys., 53, № 6, 2010, 1111  crossref
  10. I. T. Habibullin, A. R. Khakimova, “Invariant manifolds and Lax pairs for integrable nonlinear chains”, Theor Math Phys, 191, № 3, 2017, 793  crossref
1
2
3
Следующая