- Yasuyuki Hatsuda, “Perturbative/nonperturbative aspects of Bloch electrons in a honeycomb lattice”, Progress of Theoretical and Experimental Physics, 2018, № 9, 2018
- Pascal Baseilhac, “The q-deformed analogue of the Onsager algebra: Beyond the Bethe ansatz approach”, Nuclear Physics B, 754, № 3, 2006, 309
- Guang-Hong Chen, Mo-Lin Ge, “Quantum-group treatment of substrate potential in the integer quantum Hall effect”, Phys. Rev. B, 54, № 11, 1996, 7654
- Jukka A. Ketoja, Indubala I. Satija, “Renormalization approach to quasiperiodic quantum spin chains”, Physica A: Statistical Mechanics and its Applications, 219, № 1-2, 1995, 212
- E G Floratos, S Nicolis, “AnSU(2) analogue of the Azbel-Hofstadter Hamiltonian”, J. Phys. A: Math. Gen., 31, № 17, 1998, 3961
- E. Papp, C. Micu, “Deriving exact energy solutions to the symmetrizedq-difference Harper equation”, Phys. Rev. E, 65, № 4, 2002, 046234
- Jukka A. Ketoja, Indubala I. Satija, “Self-Similarity and Localization”, Phys. Rev. Lett., 75, № 14, 1995, 2762
- E Papp, “Influence of the anisotropy parameter on the spectrum of the generalizedq-symmetrized Harper equation”, J. Phys. A: Math. Gen., 36, № 8, 2003, 2077
- I. V. Krasovsky, “Bethe ansatz for the Harper equation: Solution for a small commensurability parameter”, Phys. Rev. B, 59, № 1, 1999, 322
- Ch. Kreft, R. Seiler, “Models of the Hofstadter-type”, Journal of Mathematical Physics, 37, № 10, 1996, 5207