- V. V. Vedyushkina, V. A. Kibkalo, “Realization of the Numerical Invariant of the Seifert Fibration of Integrable Systems by Billiards”, Moscow Univ. Math. Bull., 75, № 4, 2020, 161
- A. Tornambe, “Modeling and control of impact in mechanical systems: theory and experimental results”, IEEE Trans. Automat. Contr., 44, № 2, 1999, 294
- Serge Tabachnikov, Geometry in History, 2019, 401
- I.V. Gorelyshev, A.I. Neishtadt, “On the adiabatic perturbation theory for systems with impacts”, Journal of Applied Mathematics and Mechanics, 70, № 1, 2006, 4
- Marie-Claude Arnaud, “The 2-link periodic orbits which maximize or minimize the length of ap-dimensional Birkhoff billiard are hyperbolic”, Nonlinearity, 15, № 6, 2002, 1755
- P.R. Pagilla, B. Yu, “An Experimental Study of Planar Impact of a Robot Manipulator”, IEEE/ASME Trans. Mechatron., 9, № 1, 2004, 123
- A. A. Glutsyuk, “On Two-Dimensional Polynomially Integrable Billiards on Surfaces of Constant Curvature”, Dokl. Math., 98, № 1, 2018, 382
- V. V. Vedyushkina, “Topological type of isoenergy surfaces of billiard books”, Sb. Math., 212, № 12, 2021, 1660
- Boris Miller, Joseph Benisman, Proceedings of the 45th IEEE Conference on Decision and Control, 2006, 4787
- Grzegorz Gabor, Jan Tomeček, “Multiple solutions of the Dirichlet problem in multidimensional billiard spaces”, J. Fixed Point Theory Appl., 25, № 1, 2023, 7