34 citations to 10.1016/S0377-0427(96)00138-0 (Crossref Cited-By Service)
  1. Abey S. Kelil, Appanah R. Appadu, “On Semi-Classical Orthogonal Polynomials Associated with a Modified Sextic Freud-Type Weight”, Mathematics, 8, № 8, 2020, 1250  crossref
  2. I. Area, A. Branquinho, A. Foulquié Moreno, E. Godoy, “Characterizations of Δ-Volterra lattice: A symmetric orthogonal polynomials interpretation”, Journal of Mathematical Analysis and Applications, 433, № 1, 2016, 243  crossref
  3. Xiao-Min Chen, “Nonisospectral extension of Schur flow with determinant solution and orthogonal polynomials on the unit circle”, Physica D: Nonlinear Phenomena, 444, 2023, 133609  crossref
  4. Xiang-Ke Chang, Xing-Biao Hu, Shi-Hao Li, “Moment modification, multipeakons, and nonisospectral generalizations”, Journal of Differential Equations, 265, № 9, 2018, 3858  crossref
  5. Abey S. Kelil, Appanah R. Appadu, Sama Arjika, 381, Mathematical Analysis and Applications, 2021, 131  crossref
  6. Alexei Zhedanov, “Elliptic solutions of the Toda chain and a generalization of the Stieltjes–Carlitz polynomials”, Ramanujan J, 33, № 2, 2014, 157  crossref
  7. A. I. Aptekarev, M. A. Lapik, Yu. N. Orlov, “Asymptotic behavior of the spectrum of combination scattering at Stokes phonons”, Theor Math Phys, 193, № 1, 2017, 1480  crossref
  8. Luc Vinet, Alexei Zhedanov, “A characterization of classical and semiclassical orthogonal polynomials from their dual polynomials”, Journal of Computational and Applied Mathematics, 172, № 1, 2004, 41  crossref
  9. A Gago-Alonso, L Santiago-Moreno, L R Piñeiro-Díaz, “Direct and inverse problems for the generalized relativistic Toda lattice and the connection with general orthogonal polynomials”, Inverse Problems, 24, № 2, 2008, 025009  crossref
  10. Amílcar Branquinho, Ana Foulquié-Moreno, Juan C. García-Ardila, “Matrix Toda and Volterra lattices”, Applied Mathematics and Computation, 365, 2020, 124722  crossref
1
2
3
4
Следующая