- I T Habibullin, A R Khakimova, “On a method for constructing the Lax pairs for integrable models via a quadratic ansatz”, J. Phys. A: Math. Theor., 50, № 30, 2017, 305206
- E. V. Pavlova, I. T. Habibullin, A. R. Khakimova, “On One Integrable Discrete System”, J Math Sci, 241, № 4, 2019, 409
- I T Habibullin, A R Khakimova, “On the recursion operators for integrable equations”, J. Phys. A: Math. Theor., 51, № 42, 2018, 425202
- I. T. Habibullin, A. R. Khakimova, “A Direct Algorithm for Constructing Recursion Operators and Lax Pairs for Integrable Models”, Theor Math Phys, 196, № 2, 2018, 1200
- I T Habibullin, A R Khakimova, “Invariant manifolds and separation of the variables for integrable chains”, J. Phys. A: Math. Theor., 53, № 38, 2020, 385202
- Pascal de Koster, Sander Wahls, “Data-driven identification of the spectral operator in AKNS Lax pairs using conserved quantities”, Wave Motion, 127, 2024, 103273
- I. T. Habibullin, A. R. Khakimova, “Invariant manifolds and Lax pairs for integrable nonlinear chains”, Theor Math Phys, 191, № 3, 2017, 793
- Zhi-Yong Zhang, “An upper order bound of the invariant manifold in Lax pairs of a nonlinear evolution partial differential equation”, J. Phys. A: Math. Theor., 52, № 26, 2019, 265202
- I.T. Habibullin, A.R. Khakimova, “ALGORITHM FOR CONSTRUCTING A LAX PAIR AND A RECURSION OPERATOR FOR INTEGRABLE EQUATIONS”, JOR, 47, № 1, 2019, 123
- Ismagil Talgatovich Habibullin, Aigul Rinatovna Khakimova, Aleksandr Olegovich Smirnov, “Generalized invariant manifolds for integrable equations and their applications”, Ufimsk. Mat. Zh., 13, № 2, 2021, 135