12 citations to 10.7868/S0869565214230121; 10.1134/S1028335814080072 (Crossref Cited-By Service)
  1. Максим Владимирович Шамолин, Maxim Vladimirovich Shamolin, “Случаи интегрируемости уравнений движения пятимерного твердого тела при наличии внутреннего и внешнего силовых полей”, Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры», 187, 2020, 82  crossref
  2. M. V. Shamolin, “INVARIANTS OF FIVE-ORDER HOMOGENEOUS DYNAMICAL SYSTEMS WITH DISSIPATION”, Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, 514, № 1, 2023, 98  crossref
  3. M. V. Shamolin, “INVARIANT FORMS OF GEODESIC, POTENTIAL, AND DISSIPATIVE SYSTEMS ON TANGENT BUNDLE OF FINITE-DIMENSIONAL MANIFOLD”, Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, 512, № 1, 2023, 10  crossref
  4. M. V. Shamolin, “INVARIANT VOLUME FORMS OF GEODESIC, POTENTIAL, AND DISSIPATIVE SYSTEMS ON A TANGENT BUNDLE OF A FOUR-DIMENSIONAL MANIFOLD”, Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, 509, № 1, 2023, 69  crossref
  5. Maxim V. Shamolin, “Integrability of Differential Equations of Motion of an n-Dimensional Rigid Body in Nonconservative Fields for n = 5 and n = 6”, WSEAS TRANSACTIONS ON SYSTEMS, 19, 2020, 271  crossref
  6. M. V. Shamolin, “New Cases of Integrable Systems with Dissipation on the Tangent Bundles of a Multidimensional Manifold”, Dokl. Phys., 63, № 10, 2018, 424  crossref
  7. M. V. Shamolin, “Complete list of first integrals of dynamic equations for a multidimensional solid in a nonconservative field”, Dokl. Phys., 60, № 4, 2015, 183  crossref
  8. M. V. Shamolin, “Invariants of Fifth-Order Homogeneous Systems with Dissipation”, Dokl. Math., 108, № 3, 2023, 506  crossref
  9. M. V. Shamolin, “Complete list of the first integrals of dynamic equations of a multidimensional solid in a nonconservative field under the assumption of linear damping”, Dokl. Phys., 60, № 10, 2015, 471  crossref
  10. M. V. Shamolin, “Invariant Volume Forms of Geodesic, Potential, and Dissipative Systems on a Tangent Bundle of a Four-Dimensional Manifold”, Dokl. Math., 107, № 1, 2023, 57  crossref
1
2
Следующая