- Manuel F. Rañada, “Lax formalism for a family of integrable Toda-related n-particle systems”, Journal of Mathematical Physics, 36, № 12, 1995, 6846
- A. G. Reyman, M. A. Semenov-Tian-Shansky, 16, Dynamical Systems VII, 1994, 116
- Benjamin Aslan, “Transverse J-holomorphic curves in nearly Kähler $\mathbb {CP}^3$”, Ann Glob Anal Geom, 61, № 1, 2022, 115
- A. V. Tsiganov, “The Poisson bracket compatible with the classical reflection equation algebra”, Regul. Chaot. Dyn., 13, № 3, 2008, 191
- Stelios P. Kouzaris, “Multiple Hamiltonian Structures and Lax Pairs for BogoyavlenskyVolterra Systems”, JNMP, 10, № 4, 2003, 431
- Андрей Владимирович Цыганов, Andrey Vladimirovich Tsiganov, “Цепочки Тоды в методе Якоби”, ТМФ, 139, № 2, 2004, 225
- Rei Inoue, Kazuhiro Hikami, “The lattice Toda field theory for simple Lie algebras: Hamiltonian structure and -function”, Nuclear Physics B, 581, № 3, 2000, 761
- Leo T. Butler, “Toda lattices and positive-entropy integrable systems”, Invent. math., 158, № 3, 2004, 515
- H. Flaschka, A. C. Newell, M. Tabor, What Is Integrability?, 1991, 73
- A. N. Leznov, M. V. Savel'ev, “Nonlinear equations and graded Lie algebras”, J Math Sci, 36, № 6, 1987, 699