- Максим Владимирович Шамолин, Maxim Vladimirovich Shamolin, “Случаи интегрируемости уравнений движения пятимерного твердого тела при наличии внутреннего и внешнего силовых полей”, Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры», 187, 2020, 82
- M. V. Shamolin, “ON A PENDULUM MOTION IN MULTI-DIMENSIONAL SPACE. PART 2. INDEPENDENCE OF FORCE FIELDS ON THE TENSOR OF ANGULAR VELOCITY”, Vestnik of Samara University. Natural Science Series, 23, № 4, 2017, 40
- M. V. Shamolin, “Integrable Dynamic Systems with Dissipation and Finitely Many Degrees of Freedom”, J Math Sci, 235, № 3, 2018, 334
- Maxim V. Shamolin, 2018 14th International Conference "Stability and Oscillations of Nonlinear Control Systems" (Pyatnitskiy's Conference) (STAB), 2018, 1
- Maxim V. Shamolin, 130, Developments and Novel Approaches in Nonlinear Solid Body Mechanics, 2020, 77
- Maxim V. Shamolin, “Integrability of Differential Equations of Motion of an n-Dimensional Rigid Body in Nonconservative Fields for n = 5 and n = 6”, WSEAS TRANSACTIONS ON SYSTEMS, 19, 2020, 271
- M. V. Shamolin, “Integrability of Dynamic Equations of Generalized Four-Dimensional Pendulum Motion”, Lobachevskii J Math, 45, № 8, 2024, 3737