- Emile E. Anclin, “An upper bound for the number of planar lattice triangulations”, Journal of Combinatorial Theory, Series A, 103, № 2, 2003, 383
- Pietro Caputo, Fabio Martinelli, Alistair Sinclair, Alexandre Stauffer, “Random lattice triangulations: Structure and algorithms”, Ann. Appl. Probab., 25, № 3, 2015
- Stepan Yur'evich Orevkov, “Перечисление целочисленных триангуляций: уравнения Фредгольма в комбинаторике”, Математический сборник, 213, № 11, 2022, 50
- Pietro Caputo, Fabio Martinelli, Alistair Sinclair, Alexandre Stauffer, Proceedings of the forty-fifth annual ACM symposium on Theory of Computing, 2013, 615
- Stepan Yur'evich Orevkov, “Counting lattice triangulations: Fredholm equations in combinatorics”, Sb. Math., 213, № 11, 2022, 1530
- Emo Welzl, 4372, Graph Drawing, 2007, 1