- Siu-Cheong Lau, Li-Sheng Tseng, Shing-Tung Yau, “Non-Kähler SYZ Mirror Symmetry”, Commun. Math. Phys., 340, № 1, 2015, 145
- K. L. Vaninsky, “Symplectic structures and volume elements in the function space for the cubic Schrödinger equation”, Duke Math. J., 92, № 2, 1998
- Kang Feng, Mengzhao Qin, Symplectic Geometric Algorithms for Hamiltonian Systems, 2010, 39
- David Iglesias, Juan C. Marrero, David Martín de Diego, Eduardo Martínez, “Discrete Nonholonomic Lagrangian Systems on Lie Groupoids”, J Nonlinear Sci, 18, № 3, 2008, 221
- Th. Monovasilis, Z. Kalogiratou, T. E. Simos, “Numerical Solution of the two‐dimensional time independent Schrödinger Equation by symplectic schemes”, Appl Numer Analy & Comput, 1, № 1, 2004, 195
- J. Náprstek, C. Fischer, 139, Vibration Problems ICOVP 2011, 2011, 145
- “Characteristic initial data and wavefront singularities in general relativity”, Proc. R. Soc. Lond. A, 385, № 1789, 1983, 345
- Yifa Tang, Jianwen Cao, Xiangtao Liu, Yuanchang Sun, “Symplectic methods for the Ablowitz–Ladik discrete nonlinear Schrödinger equation”, J. Phys. A: Math. Theor., 40, № 10, 2007, 2425
- W. -H. Steeb, J. A. Louw, A. Kunick, “Quantum chaos of an exciton-phonon system”, Found Phys, 17, № 2, 1987, 173
- Peter M. B. Waswa, Sangram Redkar, “A direct approach for simplifying nonlinear systems with external periodic excitation using normal forms”, Nonlinear Dyn, 99, № 2, 2020, 1065