- Anton Yu. Alekseev, Harald Grosse, Volker Schomerus, “Combinatorial quantization of the Hamiltonian Chern-Simons theory I”, Commun.Math. Phys., 172, № 2, 1995, 317
- Krzysztof Andrzejewski, Cezary Gonera, Joanna Gonera, Piotr Kosiński, Paweł Maślanka, “Spinning particles, coadjoint orbits and Hamiltonian formalism”, Nuclear Physics B, 975, 2022, 115664
- Nikita Nekrasov, “BPS/CFT correspondence: non-perturbative Dyson-Schwinger equations and qq-characters”, J. High Energ. Phys., 2016, № 3, 2016, 181
- Mitsuto Hamada, Hiroaki Kanno, Kazunori Ogura, Kiyosato Okamoto, Yuichiro Togoshi, “The fundamental representation of the affine Lie algebra $A\sp {(1)}\sb {n-1}$ and the Feynman path integral”, Hiroshima Math. J., 26, № 1, 1996
- Sujay K Ashok, Jan Troost, “Path integrals on sl(2, R) orbits”, J. Phys. A: Math. Theor., 55, № 33, 2022, 335202
- D. I. Diakonov, V. Yu. Petrov, “Non-Abelian Stokes theorems in the Yang-Mills and gravity theories”, J. Exp. Theor. Phys., 92, № 6, 2001, 905
- D. Dalmazi, A. de Souza Dutra, E. M. C. Abreu, “Generalizing the soldering procedure”, Phys. Rev. D, 74, № 2, 2006, 025015
- M.A. Awada, A.H. Chamseddine, “The partition function of two-dimensional quantum gravity”, Physics Letters B, 233, № 1-2, 1989, 79
- Per Kraus, Ruben Monten, Richard M. Myers, “3D gravity in a box”, SciPost Phys., 11, № 3, 2021, 070
- Roberto Zucchini, “Quantum field theoretic representation of Wilson surfaces. Part II. Higher topological coadjoint orbit model”, J. High Energ. Phys., 2023, № 1, 2023, 16