- H. J. Vega, Differential Geometrical Methods in Theoretical Physics, 1988, 187
- J.C Brunelli, A Constandache, Ashok Das, “A Lax equation for the non-linear sigma model”, Physics Letters B, 546, № 1-2, 2002, 167
- C Destri, H J de Vega, “Light-cone lattices and the exact solution of chiral fermion and sigma models”, J. Phys. A: Math. Gen., 22, № 9, 1989, 1329
- Árpád Hegedus, “Nonlinear integral equations for finite volume excited-state energies of theO(3) andO(4) nonlinear σ-models”, J. Phys. A: Math. Gen., 38, № 23, 2005, 5345
- Андрей Владимирович Маршаков, Andrei Vladimirovich Marshakov, Андрей Владимирович Маршаков, Andrei Vladimirovich Marshakov, “Матричные модели, комплексная геометрия и интегрируемые системы. II”, ТМФ, 147, № 3, 2006, 399
- Daniel Borcherding, Holger Frahm, “Signatures of non-Abelian anyons in the thermodynamics of an interacting fermion model”, J. Phys. A: Math. Theor., 51, № 19, 2018, 195001
- Io Kawaguchi, Takuya Matsumoto, Kentaroh Yoshida, “On the classical equivalence of monodromy matrices in squashed sigma model”, J. High Energ. Phys., 2012, № 6, 2012, 82
- David Keating, Nicolai Reshetikhin, Ananth Sridhar, “Integrability of Limit Shapes of the Inhomogeneous Six Vertex Model”, Commun. Math. Phys., 391, № 3, 2022, 1181
- Govind S. Krishnaswami, T. R. Vishnu, “Quantum Rajeev–Ranken model as an anharmonic oscillator”, Journal of Mathematical Physics, 63, № 3, 2022, 032101
- Z. Bajnok, J. Balog, B. Basso, G.P. Korchemsky, L. Palla, “Scaling function in AdS/CFT from the O(6) sigma model”, Nuclear Physics B, 811, № 3, 2009, 438