- Roman Strongin, Konstantin Barkalov, Semen Bevzuk, “Global optimization method with dual Lipschitz constant estimates for problems with non-convex constraints”, Soft Comput, 24, № 16, 2020, 11853

- Yaroslav D. Sergeyev, Maria Chiara Nasso, Daniela Lera, “Numerical methods using two different approximations of space-filling curves for black-box global optimization”, J Glob Optim, 88, № 3, 2024, 707

- Shoufei Han, Kun Zhu, Ran Wang, “Improvement of evolution process of dandelion algorithm with extreme learning machine for global optimization problems”, Expert Systems with Applications, 163, 2021, 113803

- Remigijus Paulavičius, Yaroslav D. Sergeyev, Dmitri E. Kvasov, Julius Žilinskas, “Globally-biased BIRECT algorithm with local accelerators for expensive global optimization”, Expert Systems with Applications, 144, 2020, 113052

- Yaroslav D. Sergeyev, Antonio Candelieri, Dmitri E. Kvasov, Riccardo Perego, “Safe global optimization of expensive noisy black-box functions in the $\delta $-Lipschitz framework”, Soft Comput, 24, № 23, 2020, 17715

- Antanas Žilinskas, Gražina Gimbutienė, “A hybrid of Bayesian approach based global search with clustering aided local refinement”, Communications in Nonlinear Science and Numerical Simulation, 78, 2019, 104857

- Antanas Žilinskas, Linas Litvinas, “A hybrid of the simplicial partition-based Bayesian global search with the local descent”, Soft Comput, 24, № 23, 2020, 17601

- Yaroslav D. Sergeyev, Dmitri E. Kvasov, Marat S. Mukhametzhanov, “Operational zones for comparing metaheuristic and deterministic one-dimensional global optimization algorithms”, Mathematics and Computers in Simulation, 141, 2017, 96

- R. Cavoretto, A. De Rossi, M. S. Mukhametzhanov, Ya. D. Sergeyev, “On the search of the shape parameter in radial basis functions using univariate global optimization methods”, J Glob Optim, 79, № 2, 2021, 305

- Alberto Falcone, Alfredo Garro, Marat S. Mukhametzhanov, Yaroslav D. Sergeyev, “A Simulink-based software solution using the Infinity Computer methodology for higher order differentiation”, Applied Mathematics and Computation, 409, 2021, 125606
