10 citations to 10.1002/pamm.201010024 (Crossref Cited-By Service)
  1. M. V. Shamolin, “Variety of Integrable Cases in Dynamics of Low- and Multi-Dimensional Rigid Bodies in Nonconservative Force Fields”, J Math Sci, 204, № 4, 2015, 379  crossref
  2. M. V. Shamolin, “Integrable Cases in the Dynamics of a Multi-Dimensional Rigid Body in a Nonconservative Field in the Presence of a Tracking Force”, J Math Sci, 214, № 6, 2016, 865  crossref
  3. M. V. Shamolin, “Low-Dimensional and Multi-Dimensional Pendulums in Nonconservative Fields. Part 1”, J Math Sci, 233, № 2, 2018, 173  crossref
  4. M. V. Shamolin, “Classification of Integrable Cases in the Dynamics of a Four-Dimensional Rigid Body in a Nonconservative Field in the Presence of a Tracking Force”, J Math Sci, 204, № 6, 2015, 808  crossref
  5. M. V. Shamolin, “New Cases of Integrability of Equations of Motion of a Rigid Body in the n-Dimensional Space”, J Math Sci, 221, № 2, 2017, 205  crossref
  6. M. V. Shamolin, “Integrable Motions of a Pendulum in a Two-Dimensional Plane”, J Math Sci, 227, № 4, 2017, 419  crossref
  7. M. V. Shamolin, “Low-Dimensional and Multi-Dimensional Pendulums in Nonconservative Fields. Part 2”, J Math Sci, 233, № 3, 2018, 301  crossref
  8. M. V. Shamolin, “Phase Portraits of Dynamical Equations of Motion of a Rigid Body in a Resistive Medium”, J Math Sci, 233, № 3, 2018, 398  crossref
  9. Maxim V. Shamolin, “Review of Cases of Integrability in Dynamics of Lower- and Multidimensional Rigid Body in a Nonconservative Field of Forces”, International Journal of Mathematics and Computers in Simulation, 16, 2022, 42  crossref
  10. M. V. Shamolin, “Integrable Variable Dissipation Systems on the Tangent Bundle of a Multi-Dimensional Sphere and Some Applications”, J Math Sci, 230, № 2, 2018, 185  crossref