- V. G. Zvyagin, M. V. Turbin, “Solvability of the Initial-Boundary Value Problem for the Kelvin–Voigt Fluid Motion Model with Variable Density”, Dokl. Math., 107, № 1, 2023, 9
- Viktor Grigorevich Zvyagin, Mikhail Vyacheslavovich Turbin, “Теорема существования слабых решений начально-краевой задачи
для неоднородной несжимаемой модели Кельвина-Фойгта без ограничения
снизу на начальное значение плотности”, Математические заметки, 114, № 4, 2023, 628
- V. G. Zvyagin, M. V. Turbin, “An Existence Theorem for Weak Solutions of the Initial–Boundary Value Problem for the Inhomogeneous Incompressible Kelvin–Voigt Model in Which the Initial Value of Density is Not Bounded from Below”, Math Notes, 114, № 3-4, 2023, 630
- V. G. Zvyagin, M. V. Turbin, “SOLVABILITY OF THE INITIAL-BOUNDARY VALUE PROBLEM FOR THE KELVIN–VOIGT FLUID MOTION MODEL WITH VARIABLE DENSITY”, Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, 509, № 1, 2023, 13
- Mikhail Turbin, Anastasiia Ustiuzhaninova, “Trajectory and Global Attractors for the Kelvin–Voigt Model Taking into Account Memory along Fluid Trajectories”, Mathematics, 12, № 2, 2024, 266
- Cuiyun Shi, Maojun Bin, Yunxiang Li, “OPTIMAL FEEDBACK CONTROL FOR SECOND-ORDER EVOLUTION EQUATIONS”, jaac, 12, № 4, 2022, 1308
- Mikhail Turbin, Anastasiia Ustiuzhaninova, “Existence of weak solution to initial-boundary value problem for finite order Kelvin–Voigt fluid motion model”, Bol. Soc. Mat. Mex., 29, № 2, 2023, 54
- Victor Zvyagin, Mikhail Turbin, “Weak solvability of the initial-boundary value problem for inhomogeneous incompressible Kelvin–Voigt fluid motion model of arbitrary finite order”, J. Fixed Point Theory Appl., 25, № 3, 2023, 63
- V. G. Zvyagin, A. V. Zvyagin, V. P. Orlov, M. V. Turbin, “On the Weak Solvability of High-order Viscoelastic Fluid Dynamics Model”, Lobachevskii J Math, 45, № 4, 2024, 1524