- Dmitri I. Panyushev, “On the coadjoint representation of Z2-contractions of reductive Lie algebras”, Advances in Mathematics, 213, № 1, 2007, 380
- Dmitri I. Panyushev, “Commuting involutions and degenerations of isotropy representations”, Transformation Groups, 18, № 2, 2013, 507
- Jef Laga, “The average size of the 2-Selmer group of a family of non-hyperelliptic curves of genus 3”, Alg. Number Th., 16, № 5, 2022, 1161
- Dmitri I. Panyushev, Oksana S. Yakimova, “Automorphisms of finite order, periodic contractions, and Poisson-commutative subalgebras of ${\mathcal {S}}({\mathfrak g})$”, Math. Z., 303, № 2, 2023, 51
- JACK A. THORNE, “AND THE ARITHMETIC OF A FAMILY OF NON-HYPERELLIPTIC CURVES OF GENUS 3”, Forum math. Pi, 3, 2015, e1
- GIOVANNA CARNOVALE, FRANCESCO ESPOSITO, ANDREA SANTI, “ON JORDAN CLASSES FOR VINBERG’S θ-GROUPS”, Transformation Groups, 28, № 1, 2023, 151
- Mark Reeder, “Thomae’s function on a Lie group”, Pacific J. Math., 322, № 1, 2023, 139
- Beth Romano, Jack A. Thorne, “E8 and the average size of the 3‐Selmer group of the Jacobian of a pointed genus‐2 curve”, Proc. London Math. Soc., 122, № 5, 2021, 678
- Willem A. de Graaf, “Computing representatives of nilpotent orbits of θ-groups”, Journal of Symbolic Computation, 46, № 4, 2011, 438
- Paul Levy, “Vinberg’s θ-groups in positive characteristic and Kostant–Weierstrass slices”, Transformation Groups, 14, № 2, 2009, 417