- Paolo Maria Santini, “The multiscale expansions of difference equations in the small lattice spacing regime, and a vicinity and integrability test: I”, J. Phys. A: Math. Theor., 43, № 4, 2010, 045209

- Sergei Igonin, “Simplifications of Lax pairs for differential–difference equations by gauge transformations and (doubly) modified integrable equations”, Partial Differential Equations in Applied Mathematics, 11, 2024, 100821

- V. E. Adler, “Negative flows and non-autonomous reductions of the Volterra lattice”, Open Communications in Nonlinear Mathematical Physics, Special Issue in Memory of..., 2024, 11597

- Vsevolod Eduardovich Adler, “3D-совместность негативных потоков”, Теоретическая и математическая физика, 221, № 2, 2024, 280

- V. E. Adler, “3D consistency of negative flows”, Theor Math Phys, 221, № 2, 2024, 1836

- Evgeny Chistov, Sergei Igonin, “On matrix Lax representations and constructions of Miura-type transformations for differential-difference equations”, Partial Differential Equations in Applied Mathematics, 2024, 101014

- Guang-Hao Zhang, Fang-Cheng Fan, “A mixed integrable lattice hierarchy associated with the relativistic toda lattice: conservation laws, N-fold Darboux transformation and soliton solutions”, Reports on Mathematical Physics, 94, № 3, 2024, 279

- Rustem Nailevich Garifullin, “Классификация полудискретных уравнений гиперболического типа. Случай симметрий пятого порядка”, Теоретическая и математическая физика, 222, № 1, 2025, 14

- Junwei Cheng, Xiang Tian, “Symmetries for the Semi-Discrete Lattice Potential Korteweg–de Vries Equation”, Mathematics, 13, № 1, 2024, 117

- R. N. Garifullin, “Classification of semidiscrete equations of hyperbolic type. The case of fifth-order symmetries”, Theor Math Phys, 222, № 1, 2025, 10
