110 citations to 10.1088/0305-4470/39/45/R01 (Crossref Cited-By Service)
  1. Paolo Maria Santini, “The multiscale expansions of difference equations in the small lattice spacing regime, and a vicinity and integrability test: I”, J. Phys. A: Math. Theor., 43, № 4, 2010, 045209  crossref
  2. Sergei Igonin, “Simplifications of Lax pairs for differential–difference equations by gauge transformations and (doubly) modified integrable equations”, Partial Differential Equations in Applied Mathematics, 11, 2024, 100821  crossref
  3. V. E. Adler, “Negative flows and non-autonomous reductions of the Volterra lattice”, Open Communications in Nonlinear Mathematical Physics, Special Issue in Memory of..., 2024, 11597  crossref
  4. Vsevolod Eduardovich Adler, “3D-совместность негативных потоков”, Теоретическая и математическая физика, 221, № 2, 2024, 280  crossref
  5. V. E. Adler, “3D consistency of negative flows”, Theor Math Phys, 221, № 2, 2024, 1836  crossref
  6. Evgeny Chistov, Sergei Igonin, “On matrix Lax representations and constructions of Miura-type transformations for differential-difference equations”, Partial Differential Equations in Applied Mathematics, 2024, 101014  crossref
  7. Guang-Hao Zhang, Fang-Cheng Fan, “A mixed integrable lattice hierarchy associated with the relativistic toda lattice: conservation laws, N-fold Darboux transformation and soliton solutions”, Reports on Mathematical Physics, 94, № 3, 2024, 279  crossref
  8. Rustem Nailevich Garifullin, “Классификация полудискретных уравнений гиперболического типа. Случай симметрий пятого порядка”, Теоретическая и математическая физика, 222, № 1, 2025, 14  crossref
  9. Junwei Cheng, Xiang Tian, “Symmetries for the Semi-Discrete Lattice Potential Korteweg–de Vries Equation”, Mathematics, 13, № 1, 2024, 117  crossref
  10. R. N. Garifullin, “Classification of semidiscrete equations of hyperbolic type. The case of fifth-order symmetries”, Theor Math Phys, 222, № 1, 2025, 10  crossref
Предыдущая
1
8
9
10
11