- Albert C.J. Luo, Ray P.S. Han, “The resonance theory for stochastic layers in nonlinear dynamic systems”, Chaos, Solitons & Fractals, 12, № 13, 2001, 2493
- Vered Rom-Kedar, “Frequency spanning homoclinic families”, Communications in Nonlinear Science and Numerical Simulation, 8, № 3-4, 2003, 149
- Marcel Guardia, Carme Olivé, Tere M. Seara, “Exponentially Small Splitting for the Pendulum: A Classical Problem Revisited”, J Nonlinear Sci, 20, № 5, 2010, 595
- E. A. Ryzhov, K. V. Koshel’, “The effects of chaotic advection in a three-layer ocean model”, Izv. Atmos. Ocean. Phys., 47, № 2, 2011, 241
- Sergey V. Kapranov, Guennadi A. Kouzaev, “Stochastic dynamics of electric dipole in external electric fields: A perturbed nonlinear pendulum approach”, Physica D: Nonlinear Phenomena, 252, 2013, 1
- Marko Budišić, Stefan Siegmund, Doan Thai Son, Igor Mezić, “Mesochronic classification of trajectories in incompressible 3D vector fields over finite times”, Discrete & Continuous Dynamical Systems - S, 9, № 4, 2016, 923
- V. Rom-Kedar, A. C. Poje, “Universal properties of chaotic transport in the presence of diffusion”, Physics of Fluids, 11, № 8, 1999, 2044
- L. Kuznetsov, G. M. Zaslavsky, “Scaling invariance of the homoclinic tangle”, Phys. Rev. E, 66, № 4, 2002, 046212
- A.C.J. LUO, “RESONANT-OVERLAP PHENOMENA IN STOCHASTIC LAYERS OF NON-LINEAR HAMILTONIAN SYSTEMS WITH PERIODICAL EXCITATIONS”, Journal of Sound and Vibration, 240, № 5, 2001, 821
- Yu. G. Izrailsky, K. V. Koshel, D. V. Stepanov, “Determination of the optimal excitation frequency range in background flows”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 18, № 1, 2008, 013107