- V.S. Gerdjikov, G. Vilasi, A.B. Yanovski, 748, Integrable Hamiltonian Hierarchies, 2008, 211
- B Konopelchenko, W Strampp, “Reductions of (2+1)-dimensional integrable systems via mixed potential-eigenfunction constraints”, J. Phys. A: Math. Gen., 25, № 16, 1992, 4399
- V. L. Vereshchagin, “Explicit solutions of boundary-value problems for (2 + 1)-dimensional integrable systems”, Math Notes, 93, № 3-4, 2013, 360
- Владимир С Герджиков, Vladimir S Gerdjikov, “Модели типа Кулиша - Склянина: интегрируемость и редукции”, Теоретическая и математическая физика, 192, № 2, 2017, 187
- B.G. Konopelchenko, “The non-Abelian (1 + 1)-dimensional Toda lattice as the periodic fixed point of the Laplace transform for (2 + 1)-dimensional integrable systems”, Physics Letters A, 156, № 5, 1991, 221
- Juan Yue, Zhonglong Zhao, Abdul-Majid Wazwaz, “Solitons, nonlinear wave transitions and characteristics of quasi-periodic waves for a (3+1)-dimensional generalized Calogero–Bogoyavlenskii–Schiff equation in fluid mechanics and plasma physics”, Chinese Journal of Physics, 89, 2024, 896
- Sergey V. Meleshko, W.K. Schief, “A truncated Painlevé expansion associated with the Tzitzéica equation: consistency and general solution”, Physics Letters A, 299, № 4, 2002, 349
- Bao-Feng Feng, Ken-ichi Maruno, Yasuhiro Ohta, “On the τ-functions of the Degasperis–Procesi equation”, J. Phys. A: Math. Theor., 46, № 4, 2013, 045205
- David E. Rourke, Seth D. Bush, “Inversion of the Bloch equations withT2relaxation: An application of the dressing method”, Phys. Rev. E, 57, № 6, 1998, 7216
- V. S. Gerdjikov, “Kulish–Sklyanin-type models: Integrability and reductions”, Theor Math Phys, 192, № 2, 2017, 1097