- Vincent Knibbeler, Sara Lombardo, Jan A. Sanders, “Higher-Dimensional Automorphic Lie Algebras”, Found Comput Math, 17, № 4, 2017, 987
- Rossen I. Ivanov, “NLS-type equations from quadratic pencil of Lax operators: Negative flows”, Chaos, Solitons & Fractals, 161, 2022, 112299
- Alexei Cheviakov, Peng Zhao, 10, Analytical Properties of Nonlinear Partial Differential Equations, 2024, 17
- Z Popowicz, “The non-Abelian solutions for the SL(2,C) non-Abelian Toda lattice”, Inverse Problems, 3, № 2, 1987, 329
- Shimpei Kobayashi, Nozomu Matsuura, “Representation formula for discrete indefinite affine spheres”, Differential Geometry and its Applications, 69, 2020, 101592
- John Weiss, “Bäcklund transformations, focal surfaces and the two-dimensional Toda lattice”, Physics Letters A, 137, № 7-8, 1989, 365
- V. S. Gerdjikov, D. M. Mladenov, A. A. Stefanov, S. K. Varbev, 163, Nonlinear Mathematical Physics and Natural Hazards, 2015, 59
- Nian-Ning Huang, Zong-Yun Chen, Zhong-Zhu Liu, “The method of Darboux transformation matrix for solving the Landau-Lifschitz equation for a spin chain with an easy plane”, J. Phys. A: Math. Gen., 28, № 14, 1995, 4063
- V. S. Gerdjikov, G. G. Grahovski, R. I. Ivanov, “The N-wave equations with PT symmetry”, Theor Math Phys, 188, № 3, 2016, 1305
- Zuo-Nong Zhu, “The (2+1)-dimensional nonisospectral relativistic Toda hierarchy related to the generalized discrete Painlevé hierarchy”, J. Phys. A: Math. Theor., 40, № 27, 2007, 7707