- Handbook on Plasma Instabilities, 1982, 1309
- M K Ali, R L Somorjai, “Quasisoliton solutions in one-dimensional anharmonic lattices. I. Influence of the shape of the pair potential”, J. Phys. A: Math. Gen., 12, № 12, 1979, 2291
- V. P. Maslov, O. Yu. Shvedov, “Initial conditions in quasi-classical field theory”, Theor Math Phys, 114, № 2, 1998, 184
- Jan C. A. Boeyens, The Chemistry of Matter Waves, 2013, 117
- D. M. O'Brien, “A trace formula for schrödinger operators with step potentials”, J. Aust. Math. Soc. Series B, Appl. Math, 24, № 2, 1982, 138
- Kun Hao, Dmitri Kharzeev, Vladimir Korepin, “Bethe Ansatz for XXX chain with negative spin”, Int. J. Mod. Phys. A, 34, № 31, 2019, 1950197
- Gábor Takács, Gérard Watts, “Non-unitarity in quantum affine Toda theory and perturbed conformal field theory”, Nuclear Physics B, 547, № 3, 1999, 538
- J. L. Jacquot, M. Umezawa, “Lorentz invariance of the extended object”, Journal of Mathematical Physics, 23, № 9, 1982, 1693
- A. B. Borisov, V. V. Kiselev, “Many-soliton solutions of asymmetric chiral SU(2) and SL(2, R) theories (d=1)”, Theor Math Phys, 54, № 2, 1983, 160
- S. Villain-Guillot, R. Dandoloff, A. Saxena, A. R. Bishop, “Topological solitons and geometrical frustration”, Phys. Rev. B, 52, № 9, 1995, 6712