- Denis Krutikov, “Spectra ofp-adic Schr dinger-type operators with random radial potentials”, J. Phys. A: Math. Gen., 36, № 15, 2003, 4433
- Roberto Cianci, Andrew Khrennikov, “Canp-adic numbers be useful to regularize divergent expectation values of quantum observables?”, Int J Theor Phys, 33, № 6, 1994, 1217
- S. V. Kozyrev, A. Yu. Khrennikov, “Localization in space for a free particle in ultrametric quantum mechanics”, Dokl. Math., 74, № 3, 2006, 906
- Ingmar Saberi, “Holography and Local Fields”, P-Adic Num Ultrametr Anal Appl, 10, № 3, 2018, 151
- Alexander Davidovich Bendikov, Alexander Asaturovich Grigor'yan, Stanislav Alekseevich Molchanov, Gennady Pinkhosovich Samorodnitsky, “Об одном классе случайных возмущений иерархического лапласиана”, Известия Российской академии наук. Серия математическая, 79, № 5, 2015, 3
- Roberto Cianci, Andrew Khrennikov, “p-adic numbers and renormalization of eigenfunctions in quantum mechanics”, Physics Letters B, 328, № 1-2, 1994, 109
- V.S. Vladimirov, “Some problems of analysis on the field ofp-adic numbers”, Integral Transforms and Special Functions, 6, № 1-4, 1998, 111
- R. S. Ismagilov, “Spectrum of a self-adjoint operator in L2 (K), where K is a local field; Analog of the Feynman-Kac formula”, Theor Math Phys, 89, № 1, 1991, 1024
- Roman Urban, “The Vladimirov operator with variable coefficients on finite adeles and the Feynman formulas for the Schrödinger equation”, Journal of Mathematical Physics, 65, № 4, 2024, 042103
- A. N. Kochubei, 70, Mathematical Results in Quantum Mechanics, 1994, 353