- Максим Владимирович Шамолин, Maxim Vladimirovich Shamolin, “Случаи интегрируемости уравнений движения пятимерного твердого тела при наличии внутреннего и внешнего силовых полей”, Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры», 187, 2020, 82
- Maxim V. Shamolin, “Integrability of Differential Equations of Motion of an n-Dimensional Rigid Body in Nonconservative Fields for n = 5 and n = 6”, WSEAS TRANSACTIONS ON SYSTEMS, 19, 2020, 271
- M. V Shamolin, “INVARIANTS OF GEODESIC, POTENTIAL AND DISSIPATIVE SYSTEMS WITH THREE DEGREES OF FREEDOM”, Differencialʹnye uravneniâ, 60, № 3, 2024, 322
- M. V. Shamolin, “Invariants of Seventh-Order Homogeneous Dynamical Systems with Dissipation”, Dokl. Math., 109, № 2, 2024, 152
- M. V. Shamolin, “Invariants of Geodesic, Potential, and Dissipative Systems with
Three Degrees of Freedom”, Diff Equat, 60, № 3, 2024, 296
- M. V. Shamolin, “New Cases of Integrable Ninth-Order Conservative and Dissipative Dynamical Systems”, Dokl. Math., 2024
- M. V. Shamolin, “Invariants of seventh-order homogeneous dynamical systems with dissipation”, Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, 516, 2024, 65
- M. V. Shamolin, “New cases of integrable ninth-order conservative and dissipative dynamical systems”, Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, 518, № 1, 2024, 51
- M. V. Shamolin, “Integrability of Dynamic Equations of Generalized Four-Dimensional Pendulum Motion”, Lobachevskii J Math, 45, № 8, 2024, 3737