9 citations to 10.7868/S0869565213100101; 10.1134/S1028335813040022 (Crossref Cited-By Service)
  1. Максим Владимирович Шамолин, Maxim Vladimirovich Shamolin, “Случаи интегрируемости уравнений движения пятимерного твердого тела при наличии внутреннего и внешнего силовых полей”, Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры», 187, 2020, 82  crossref
  2. Maxim V. Shamolin, “Integrability of Differential Equations of Motion of an n-Dimensional Rigid Body in Nonconservative Fields for n = 5 and n = 6”, WSEAS TRANSACTIONS ON SYSTEMS, 19, 2020, 271  crossref
  3. M. V Shamolin, “INVARIANTS OF GEODESIC, POTENTIAL AND DISSIPATIVE SYSTEMS WITH THREE DEGREES OF FREEDOM”, Differencialʹnye uravneniâ, 60, № 3, 2024, 322  crossref
  4. M. V. Shamolin, “Invariants of Seventh-Order Homogeneous Dynamical Systems with Dissipation”, Dokl. Math., 109, № 2, 2024, 152  crossref
  5. M. V. Shamolin, “Invariants of Geodesic, Potential, and Dissipative Systems with Three Degrees of Freedom”, Diff Equat, 60, № 3, 2024, 296  crossref
  6. M. V. Shamolin, “New Cases of Integrable Ninth-Order Conservative and Dissipative Dynamical Systems”, Dokl. Math., 2024  crossref
  7. M. V. Shamolin, “Invariants of seventh-order homogeneous dynamical systems with dissipation”, Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, 516, 2024, 65  crossref
  8. M. V. Shamolin, “New cases of integrable ninth-order conservative and dissipative dynamical systems”, Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, 518, № 1, 2024, 51  crossref
  9. M. V. Shamolin, “Integrability of Dynamic Equations of Generalized Four-Dimensional Pendulum Motion”, Lobachevskii J Math, 45, № 8, 2024, 3737  crossref