- Fumikazu Tamari, “A construction of some [n, k, d; q]-codes meeting the Griesmer bound”, Discrete Mathematics, 116, № 1-3, 1993, 269
- Noboru Hamada, “A characterization of some [n,k,d;q]-codes meeting the Griesmer bound using a minihyper in a finite projective geometry”, Discrete Mathematics, 116, № 1-3, 1993, 229
- R. Hill, D. E. Newton, “Optimal ternary linear codes”, Des Codes Crypt, 2, № 2, 1992, 137
- Stefan Dodunekov, Juriaan Simonis, Numbers, Information and Complexity, 2000, 245
- Keisuke Shiromoto, Leo Storme, “A Griesmer Bound for Codes over Finite Quasi-Frobenius Rings”, Electronic Notes in Discrete Mathematics, 6, 2001, 337
- H. Janwa, 539, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 1991, 19
- Keisuke Shiromoto, Leo Storme, “A Griesmer bound for linear codes over finite quasi-Frobenius rings”, Discrete Applied Mathematics, 128, № 1, 2003, 263
- Noboru Hamada, Tor Helleseth, “A characterization of some {v2+2v3, v1+2v2;k−1,3}-minihypers and some (vk−30,k,3k−1−21;3)-codes meeting the Griesmer bound”, Journal of Statistical Planning and Inference, 34, № 3, 1993, 387