- àngel Jorba, “A Methodology for the Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems”, Experimental Mathematics, 8, № 2, 1999, 155
- F. Jay Bourland, Richard Haberman, William L. Kath, “Averaging Methods for the Phase Shift of Arbitrarily Perturbed Strongly Nonlinear Oscillators with an Application to Capture”, SIAM J. Appl. Math., 51, № 4, 1991, 1150
- Henk W. Broer, “Resonance and Fractal Geometry”, Acta Appl Math, 120, № 1, 2012, 61
- Giovanni Romano, Raffaele Barretta, Marina Diaco, “On the general form of the law of dynamics”, International Journal of Non-Linear Mechanics, 44, № 6, 2009, 689
- N. J. Fitch, C. A. Weidner, L. P. Parazzoli, H. R. Dullin, H. J. Lewandowski, “Experimental Demonstration of Classical Hamiltonian Monodromy in the1∶1∶2Resonant Elastic Pendulum”, Phys. Rev. Lett., 103, № 3, 2009, 034301
- Oscar Gonzalez, “Mechanical systems subject to holonomic constraints: Differential–algebraic formulations and conservative integration”, Physica D: Nonlinear Phenomena, 132, № 1-2, 1999, 165
- Young S. Lee, Alexander F. Vakakis, Lawrence A. Bergman, D. Michael McFarland, “Suppression of limit cycle oscillations in the van der Pol oscillator by means of passive non-linear energy sinks”, Struct. Control Health Monit., 13, № 1, 2006, 41
- Xing Zhou, “The 0:1 resonance bifurcation associated with the supercritical Hamiltonian pitchfork bifurcation”, Dynamical Systems, 38, № 3, 2023, 427
- Frederic Gabern, Àngel Jorba, Ugo Locatelli, “On the construction of the Kolmogorov normal form for the Trojan asteroids”, Nonlinearity, 18, № 4, 2005, 1705
- Ling Hou, A.N. Michel, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148), 2001, 4846