- Semsettin Numan Sozen, Murat Gokce, Cagatay Yavuzyilmaz, Farid Gulmammadov, Halil Ersin Soken, 2021 IEEE 8th International Workshop on Metrology for AeroSpace (MetroAeroSpace), 2021, 1
- Zuowei Shen, Haizhao Yang, Shijun Zhang, “Deep Network With Approximation Error Being Reciprocal of Width to Power of Square Root of Depth”, Neural Computation, 33, № 4, 2021, 1005
- Hengjie Chen, Dansheng Yu, Zhong Li, Yoshihiro Sawano, “The Construction and Approximation of ReLU Neural Network Operators”, Journal of Function Spaces, 2022, 2022, 1
- Liqun Wang, Zengtao Chen, Guolai Yang, “An interval uncertainty analysis method for structural response bounds using feedforward neural network differentiation”, Applied Mathematical Modelling, 82, 2020, 449
- В.А. Галкин, Т.В. Гавриленко, А.Д. Смородинов, “Some aspects of approximation and interpolation of functions artificial neural networks”, Вестник КРАУНЦ. Физико-математические науки, № 1, 2022, 54
- Guoshun Wang, Dansheng Yu, Lingmin Guan, “Neural network interpolation operators of multivariate functions”, Journal of Computational and Applied Mathematics, 431, 2023, 115266
- Yanhua Guo, Shuangquan Shao, Xudong Geng, Hao Li, Zhichao Wang, Nevzat Akkurt, “A data-driven evaluating method on the defrosting effect of the air source heat pump system in Beijing”, Applied Thermal Engineering, 235, 2023, 121377
- Vugar E. Ismailov, “Approximation error of single hidden layer neural networks with fixed weights”, Information Processing Letters, 185, 2024, 106467
- Tujitan Chakraborty, “Strong Universal Consistency and Rate of Convergence of Fast Trained Deep Feedforward Networks”, SSRN Journal, 2019
- Vladimir Krutikov, Svetlana Gutova, Elena Tovbis, Lev Kazakovtsev, Eugene Semenkin, “Relaxation Subgradient Algorithms with Machine Learning Procedures”, Mathematics, 10, № 21, 2022, 3959