- À.Â. Çâÿãèí, Â.Ã. Çâÿãèí, “PULLBACK-ÀÒÒÐÀÊÒÎÐÛ ÌÎÄÅËÈ ÄÂÈÆÅÍÈß ÑËÀÁÎ ÊÎÍÖÅÍÒÐÈÐÎÂÀÍÍÛÕ ÂÎÄÍÛÕ ÐÀÑÒÂÎÐΠÏÎËÈÌÅÐÎÂ Ñ ÐÅÎËÎÃÈ×ÅÑÊÈÌ ÑÎÎÒÍÎØÅÍÈÅÌ, ÓÄÎÂËÅÒÂÎÐßÞÙÈÌ ÏÐÈÍÖÈÏÓ ÎÁÚÅÊÒÈÂÍÎÑÒÈ, "Äîêëàäû Àêàäåìèè íàóê"”, Äîêëàäû Àêàäåìèè Íàóê, № 5, 2017, 531
- A. S. Boldyrev, V. G. Zvyagin, “Attractors for Weak Solutions of a Regularized Model of Viscoelastic Mediums Motion With Memory in Non-Autonomous Case”, Russ Math., 62, № 7, 2018, 63
- A. S. Boldyrev, V. G. Zvyagin, “Attractors for Model of Viscoelastic Media with Memory Motion in Non-Autonomous Case”, Lobachevskii J Math, 40, № 7, 2019, 918
- Victor G. Zvyagin, Stanislav K. Kondratyev, “Approximating topological approach to the existence of attractors in fluid mechanics”, J. Fixed Point Theory Appl., 13, № 2, 2013, 359
- A. V. Zvyagin, “Attractors for a model of polymer motion with objective derivative in the rheological relation”, Dokl. Math., 88, № 3, 2013, 730
- Mikhail Turbin, Anastasiia Ustiuzhaninova, “Trajectory and Global Attractors for the Kelvin–Voigt Model Taking into Account Memory along Fluid Trajectories”, Mathematics, 12, № 2, 2024, 266
- Victor G. Zvyagin, 1997, 2018, 020017
- Dmitry Vorotnikov, “Asymptotic behavior of the non-autonomous 3D Navier–Stokes problem with coercive force”, Journal of Differential Equations, 251, № 8, 2011, 2209
- A. V. Zvyagin, V. G. Zvyagin, “Pullback attractors for a model of weakly concentrated aqueous polymer solution motion with a rheological relation satisfying the objectivity principle”, Dokl. Math., 95, № 3, 2017, 247
- M. V. Turbin, A. S. Ustiuzhaninova, “Convergence of Attractors for an Approximation to Attractors of a Modified Kelvin–Voigt Model”, Comput. Math. and Math. Phys., 62, № 2, 2022, 325