- Alberto Escalante, J. Manuel-Cabrera, “Hamiltonian dynamics and Faddeev–Jackiw formulation of 3D gravity with a Barbero–Immirzi like parameter”, Eur. Phys. J. C, 77, № 5, 2017, 303
- N. Kalantar-Nayestanaki, “In Memory of Ludvig Dmitrievich Faddeev: A Giant in Mathematical Physics”, Few-Body Syst, 60, № 2, 2019, 47
- I. Lyris, P. Lykourgias, A.I. Karanikas, “Fermionic path integrals and correlation dynamics in a 1D XY system”, Annals of Physics, 421, 2020, 168286
- Ömer F. Dayi, “Quantization of dynamical systems with reducible constraints and the superparticle”, Phys. Rev. D, 44, № 4, 1991, 1239
- M.I. Krivoruchenko, Amand Faessler, A.A. Raduta, C. Fuchs, “Gauge-invariant counterparts and quantization of systems under holonomic constraints”, Physics Letters B, 608, № 1-2, 2005, 164
- Máximo Bañados, Mauricio Contreras, “Darboux coordinates for (first-order) tetrad gravity”, Class. Quantum Grav., 15, № 6, 1998, 1527
- R. Bufalo, B. M. Pimentel, “Higher-derivative non-Abelian gauge fields via the Faddeev–Jackiw formalism”, Eur. Phys. J. C, 74, № 8, 2014, 2993
- José M Isidro, “Coherent states and duality”, Physics Letters A, 301, № 3-4, 2002, 210
- E.M.C. Abreu, J. Ananias Neto, A.C.R. Mendes, C. Neves, W. Oliveira, “Obtaining gauge invariant actions via symplectic embedding formalism”, Annalen der Physik, 524, № 8, 2012, 434
- D.M. Gitman, I.V. Tyutin, “Hamiltonization of theories with degenerate coordinates”, Nuclear Physics B, 630, № 3, 2002, 509