- Krzysztof Szczepaniec, Bartłomiej Dybiec, “Quantifying a resonant-activation-like phenomenon in non-Markovian systems”, Phys. Rev. E, 89, № 4, 2014, 042138
- Lorenzo Toniazzi, “Stochastic classical solutions for space–time fractional evolution equations on a bounded domain”, Journal of Mathematical Analysis and Applications, 469, № 2, 2019, 594
- Zbigniew Michna, “Asymptotic behavior of the supremum tail probability for anomalous diffusions”, Physica A: Statistical Mechanics and its Applications, 387, № 2-3, 2008, 413
- Agnieszka Jurlewicz, Karina Weron, Marek Teuerle, “Generalized Mittag-Leffler relaxation: Clustering-jump continuous-time random walk approach”, Phys. Rev. E, 78, № 1, 2008, 011103
- Sebastian Orzeł, Aleksander Weron, “Fractional Klein–Kramers dynamics for subdiffusion and Itô formula”, J. Stat. Mech., 2011, № 01, 2011, P01006
- A. Mura, M.S. Taqqu, F. Mainardi, “Non-Markovian diffusion equations and processes: Analysis and simulations”, Physica A: Statistical Mechanics and its Applications, 387, № 21, 2008, 5033
- Long Shi, Zu-Guo Yu, Hai-Lan Huang, Zhi Mao, Ai-Guo Xiao, “The subordinated processes controlled by a family of subordinators and corresponding Fokker–Planck type equations”, J. Stat. Mech., 2014, № 12, 2014, P12002
- Ralf Metzler, Aleksei V. Chechkin, Joseph Klafter, Encyclopedia of Complexity and Systems Science, 2009, 5218
- B. Gunaratnam, W. A. Woyczyński, “Multiscale Conservation Laws Driven by Lévy Stable and Linnik Diffusions: Asymptotics, Shock Creation, Preservation and Dissolution”, J Stat Phys, 160, № 1, 2015, 29
- Longjin Lv, Weiyuan Qiu, Fuyao Ren, “Fractional Fokker-Planck Equation with Space and Time Dependent Drift and Diffusion”, J Stat Phys, 149, № 4, 2012, 619