160 citations to 10.1016/j.physa.2004.11.003 (Crossref Cited-By Service)
  1. Krzysztof Szczepaniec, Bartłomiej Dybiec, “Quantifying a resonant-activation-like phenomenon in non-Markovian systems”, Phys. Rev. E, 89, № 4, 2014, 042138  crossref
  2. Lorenzo Toniazzi, “Stochastic classical solutions for space–time fractional evolution equations on a bounded domain”, Journal of Mathematical Analysis and Applications, 469, № 2, 2019, 594  crossref
  3. Zbigniew Michna, “Asymptotic behavior of the supremum tail probability for anomalous diffusions”, Physica A: Statistical Mechanics and its Applications, 387, № 2-3, 2008, 413  crossref
  4. Agnieszka Jurlewicz, Karina Weron, Marek Teuerle, “Generalized Mittag-Leffler relaxation: Clustering-jump continuous-time random walk approach”, Phys. Rev. E, 78, № 1, 2008, 011103  crossref
  5. Sebastian Orzeł, Aleksander Weron, “Fractional Klein–Kramers dynamics for subdiffusion and Itô formula”, J. Stat. Mech., 2011, № 01, 2011, P01006  crossref
  6. A. Mura, M.S. Taqqu, F. Mainardi, “Non-Markovian diffusion equations and processes: Analysis and simulations”, Physica A: Statistical Mechanics and its Applications, 387, № 21, 2008, 5033  crossref
  7. Long Shi, Zu-Guo Yu, Hai-Lan Huang, Zhi Mao, Ai-Guo Xiao, “The subordinated processes controlled by a family of subordinators and corresponding Fokker–Planck type equations”, J. Stat. Mech., 2014, № 12, 2014, P12002  crossref
  8. Ralf Metzler, Aleksei V. Chechkin, Joseph Klafter, Encyclopedia of Complexity and Systems Science, 2009, 5218  crossref
  9. B. Gunaratnam, W. A. Woyczyński, “Multiscale Conservation Laws Driven by Lévy Stable and Linnik Diffusions: Asymptotics, Shock Creation, Preservation and Dissolution”, J Stat Phys, 160, № 1, 2015, 29  crossref
  10. Longjin Lv, Weiyuan Qiu, Fuyao Ren, “Fractional Fokker-Planck Equation with Space and Time Dependent Drift and Diffusion”, J Stat Phys, 149, № 4, 2012, 619  crossref
Предыдущая
1
2
3
4
5
6
7
8
16
Следующая