- John-John Ketelbuters, Donatien Hainaut, “A recursive method for fractional Hawkes intensities and the potential approach of credit risk”, Journal of Computational and Applied Mathematics, 448, 2024, 115895
- C. Constantinescu, R. Loeffen, P. Patie, “First passage times over stochastic boundaries for subdiffusive processes”, Trans. Amer. Math. Soc., 375, № 3, 2022, 1629
- Marcin Magdziarz, “Path Properties of Subdiffusion—A Martingale Approach”, Stochastic Models, 26, № 2, 2010, 256
- John-John Ketelbuters, Donatien Hainaut, “CDS pricing with fractional Hawkes processes”, European Journal of Operational Research, 297, № 3, 2022, 1139
- A. Jurlewicz, A. Wyłomańska, P. Żebrowski, “Financial Data Analysis by means of Coupled Continuous-Time Random Walk in Rachev-Rűschendorf Model”, Acta Phys. Pol. A, 114, № 3, 2008, 629
- Xudong Wang, Yao Chen, Weihua Deng, “Feynman-Kac equation revisited”, Phys. Rev. E, 98, № 5, 2018, 052114
- Boris Baeumer, Mihály Kovács, Mark M. Meerschaert, Harish Sankaranarayanan, “Reprint of: Boundary conditions for fractional diffusion”, Journal of Computational and Applied Mathematics, 339, 2018, 414
- Karina Weron, Aleksander Stanislavsky, Agnieszka Jurlewicz, Mark M. Meerschaert, Hans-Peter Scheffler, “Clustered continuous-time random walks: diffusion and relaxation consequences”, Proc. R. Soc. A., 468, № 2142, 2012, 1615
- Foad Shokrollahi, Carlo Cattani, “Subdiffusive fractional Black–Scholes model for pricing currency options under transaction costs”, Cogent Mathematics & Statistics, 5, № 1, 2018, 1470145
- Janusz Gajda, Marcin Magdziarz, “Kramers’ escape problem for fractional Klein-Kramers equation with temperedα-stable waiting times”, Phys. Rev. E, 84, № 2, 2011, 021137