- М. Шамолин, “НОВЫЕ СЛУЧАИ ИНТЕГРИРУЕМЫХ СИСТЕМ С ДИССИПАЦИЕЙ НА КАСАТЕЛЬНОМ РАССЛОЕНИИ К МНОГОМЕРНОЙ СФЕРЕ”, Доклады Академии наук, № 2, 2017, 177
- Максим Владимирович Шамолин, Maxim Vladimirovich Shamolin, “Случаи интегрируемости уравнений движения пятимерного твердого тела при наличии внутреннего и внешнего силовых полей”, Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры», 187, 2020, 82
- M. V. Shamolin, “The Case of Integrable Systems with Dissipation on the Tangent Bundle of a Multidimensional Sphere”, J Math Sci, 228, № 6, 2018, 723
- M. V. Shamolin, “Integrable Systems with Dissipation and Two and Three Degrees of Freedom”, J Math Sci, 235, № 2, 2018, 220
- Maxim V. Shamolin, 2018 14th International Conference "Stability and Oscillations of Nonlinear Control Systems" (Pyatnitskiy's Conference) (STAB), 2018, 1
- Maxim V. Shamolin, “Integrability of Differential Equations of Motion of an n-Dimensional Rigid Body in Nonconservative Fields for n = 5 and n = 6”, WSEAS TRANSACTIONS ON SYSTEMS, 19, 2020, 271
- M. V. Shamolin, “New cases of integrable systems with dissipation on a tangent bundle of a two-dimensional manifold”, Dokl. Phys., 62, № 8, 2017, 392
- M. V. Shamolin, “Integrable Dynamic Systems with Dissipation and Finitely Many Degrees of Freedom”, J Math Sci, 235, № 3, 2018, 334
- Maxim V. Shamolin, 130, Developments and Novel Approaches in Nonlinear Solid Body Mechanics, 2020, 77
- M. V. Shamolin, “New cases of integrable systems with dissipation on a tangent bundle of a multidimensional sphere”, Dokl. Phys., 62, № 5, 2017, 262