- Laurent Gosse, Norbert J. Mauser, “Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice – III. From ab initio models to WKB for Schrödinger–Poisson”, Journal of Computational Physics, 211, № 1, 2006, 326
- F N Litvinets, A V Shapovalov, A Yu Trifonov, “Berry phases for 3D Hartree-type equations with a quadratic potential and a uniform magnetic field”, J. Phys. A: Math. Theor., 40, № 36, 2007, 11129
- V V Belov, M F Kondratieva, A Yu Trifonov, “Semiclassical spectrum for a Hartree-type equation corresponding to a rest point of the Hamilton–Ehrenfest system”, J. Phys. A: Math. Gen., 39, № 34, 2006, 10821
- V. V. Belov, F. N. Litvinets, A. Yu. Trifonov, “Semiclassical spectral series of a Hartree-type operator corresponding to a rest point of the classical Hamilton-Ehrenfest system”, Theor Math Phys, 150, № 1, 2007, 21
- Владимир Владимирович Белов, Vladimir Vladimirovich Belov, Федор Николаевич Литвинец, Fedor Nikolaevich Litvinets, Андрей Юрьевич Трифонов, Andrei Yurievich Trifonov, “Квазиклассические спектральные серии оператора типа Хартри, отвечающие точке покоя классической системы Гамильтона - Эренфеста”, ТМФ, 150, № 1, 2007, 26
- F N Litvinets, A V Shapovalov, A Yu Trifonov, “Berry phases for the nonlocal Gross–Pitaevskii equation with a quadratic potential”, J. Phys. A: Math. Gen., 39, № 5, 2006, 1191
- Agissilaos Athanassoulis, Thierry Paul, Federica Pezzotti, Mario Pulvirenti, “Semiclassical Propagation of Coherent States for the Hartree Equation”, Ann. Henri Poincaré, 12, № 8, 2011, 1613
- A. V. Borisov, A. Yu. Trifonov, A. V. Shapovalov, “The Nonlinear Schrodinger Equation for a Many-Dimensional System in an Oscillator Field”, Russ Phys J, 48, № 7, 2005, 746
- A. V. Borisov, A. Yu. Trifonov, A. V. Shapovalov, “A semiclassical approximation for the nonstationary two-dimensional nonlinear Schrödinger equation with an external field in polar coordinates”, Russ Phys J, 49, № 7, 2006, 734
- A. L. Lisok, A. Yu. Trifonov, A. V. Shapovalov, “Quasi-energy spectral series for a nonlocal Gross-Pitaevskii equation”, Russ Phys J, 50, № 7, 2007, 695