- H. P. Heinig, V. D. Stepanov, “Weighted Hardy Inequalities for Increasing Functions”, Can. j. math., 45, № 1, 1993, 104
- Martin Křepela, “Boundedness of Hardy-type operators with a kernel: integral weighted conditions for the case $0<q<1\le p<\infty $ 0 < q < 1 ≤ p < ∞”, Rev Mat Complut, 30, № 3, 2017, 547
- Vladimir Dmitrievich Stepanov, “Об оптимальных пространствах Банаха, содержащих весовой конус монотонных или квазивогнутых функций”, Математические заметки, 98, № 6, 2015, 907
- Qinsheng Lai, “Linear monotone operators and weighted BMO”, Proc. Amer. Math. Soc., 120, № 3, 1994, 875
- A Gogatishvili, V D Stepanov, “Reduction theorems for weighted integral inequalities on the cone of monotone functions”, Russ. Math. Surv., 68, № 4, 2013, 597
- M. Krbec, B. Opic, L. Pick, J. Rákosnik, 133, Function Spaces, Differential Operators and Nonlinear Analysis, 1993, 158
- Амиран Гогатишвили, Amiran Gogatishvili, Владимир Дмитриевич Степанов, Vladimir Dmitrievich Stepanov, “Редукционные теоремы для весовых интегральных неравенств на конусе монотонных функций”, Успехи математических наук, 68, № 4(412), 2013, 3
- María J. Carro, Anca N. Marcoci, Liviu G. Marcoci, “Extrapolation on the cone of decreasing functions”, Journal of Approximation Theory, 164, № 5, 2012, 776
- Gord Sinnamon, “One-dimensional Hardy-type inequalities in many dimensions”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 128, № 4, 1998, 833
- Komil Kuliev, Gulchehra Kulieva, Normurod Ismatov, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 020009