- Arun Venkitaraman, Håkan Hjalmarsson, Bo Wahlberg, “Learning sparse linear dynamic networks in a hyper-parameter free setting”, IFAC-PapersOnLine, 53, № 2, 2020, 75

- George Papageorgiou, Pantelis Bouboulis, Sergios Theodoridis, 2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), 2013, 1

- Zhenkai Fan, Zhaohua Lu, Yanjun Han, 2014 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, 2014, 1

- Vardan Papyan, Jeremias Sulam, Michael Elad, “Working Locally Thinking Globally: Theoretical Guarantees for Convolutional Sparse Coding”, IEEE Trans. Signal Process., 65, № 21, 2017, 5687

- A. Hadj Brahim, A. Ali Pacha, N. Hadj Said, “A new image compression-encryption scheme based on compressive sensing & classical AES algorithm”, Multimed Tools Appl, 82, № 27, 2023, 42087

- Xian-Hua Han, Yen-Wei Chen, 552, Subspace Methods for Pattern Recognition in Intelligent Environment, 2014, 123

- Grazia Iadarola, Pasquale Daponte, Luca De Vito, Sergio Rapuano, “Over the Limits of Traditional Sampling: Advantages and Issues of AICs for Measurement Instrumentation”, Sensors, 23, № 2, 2023, 861

- Rongrong Qian, Yuan Qi, Yue Xue, Tianzhi Zhou, Jiyan Zhang, “Federated Consensus-Based Algorithm for Stable Recovery of Sparse Signals”, IEEE Trans. Veh. Technol., 72, № 12, 2023, 15719

- Robert Vanderbei, Kevin Lin, Han Liu, Lie Wang, “Revisiting compressed sensing: exploiting the efficiency of simplex and sparsification methods”, Math. Prog. Comp., 8, № 3, 2016, 253

- Hui-Huang Zhao, Paul L. Rosin, Yu-Kun Lai, “Block Compressive Sensing for Solder Joint Images With Wavelet Packet Thresholding”, IEEE Trans. Compon., Packag. Manufact. Technol., 9, № 6, 2019, 1190
