- Rotem Mulayoff, Tomer Michaeli, “On the Minimal Overcompleteness Allowing Universal Sparse Representation”, IEEE Trans. Inform. Theory, 65, № 6, 2019, 3585
- Zongbo Xie, Jiuchao Feng, “KFCE: A dictionary generation algorithm for sparse representation”, Signal Processing, 89, № 10, 2009, 2072
- Yi Luo, Jacky Jiang, Mengye Cai, Shahriar Mirabbasi, “CMOS computational camera with a two-tap coded exposure image sensor for single-shot spatial-temporal compressive sensing”, Opt. Express, 27, № 22, 2019, 31475
- Sooraj K. Ambat, K.V.S. Hari, “An iterative framework for sparse signal reconstruction algorithms”, Signal Processing, 108, 2015, 351
- Haofei Wang, Lingyun Ren, Ozlem Kilic, Aly E. Fathy, 2016 IEEE MTT-S International Microwave Symposium (IMS), 2016, 1
- Hongbao Cao, Junbo Duan, Dongdong Lin, Yin Yao Shugart, Vince Calhoun, Yu-Ping Wang, “Sparse representation based biomarker selection for schizophrenia with integrated analysis of fMRI and SNPs”, NeuroImage, 102, 2014, 220
- Zhenghao Shi, Binxin Xu, Xia Zheng, Minghua Zhao, “A Chinese character structure preserved denoising method for Chinese tablet calligraphy document images based on KSVD dictionary learning”, Multimed Tools Appl, 76, № 13, 2017, 14921
- Alexandre Belloni, Victor Chernozhukov, “Least Squares After Model Selection in High-Dimensional Sparse Models”, SSRN Journal, 2009
- Negin Alemazkoor, Hadi Meidani, “A preconditioning approach for improved estimation of sparse polynomial chaos expansions”, Computer Methods in Applied Mechanics and Engineering, 342, 2018, 474
- Nabil Madali, Antonin Gilles, Patrick Gioia, Luce Morin, “Automatic depth map retrieval from digital holograms using a depth-from-focus approach”, Appl. Opt., 62, № 10, 2023, D77