- Dzati Athiar Ramli, Tan Wan Chien, “Fast Kernel Sparse Representation Classifier using Improved Smoothed- l 0 Norm”, Procedia Computer Science, 112, 2017, 494
- Justin P. Haldar, Daeun Kim, “OEDIPUS: An Experiment Design Framework for Sparsity-Constrained MRI”, IEEE Trans. Med. Imaging, 38, № 7, 2019, 1545
- Jungang Yang, Tian Jin, Xiaotao Huang, “Compressed Sensing Radar Imaging With Magnitude Sparse Representation”, IEEE Access, 7, 2019, 29722
- B. Jian, B.C. Vemuri, “A Unified Computational Framework for Deconvolution to Reconstruct Multiple Fibers From Diffusion Weighted MRI”, IEEE Trans. Med. Imaging, 26, № 11, 2007, 1464
- Farrukh Hafeez, Usman Ullah Sheikh, Asif Iqbal, Muhammad Naveed Aman, “Incoherent and Online Dictionary Learning Algorithm for Motion Prediction”, Electronics, 11, № 21, 2022, 3525
- Raymond Ptucha, Grigorios Tsagkatakis, Andreas Savakis, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), 2011, 2136
- Lufeng Liu, Xinpeng Du, Lizhi Cheng, “Stable Signal Recovery via Randomly Enhanced Adaptive Subspace Pursuit Method”, IEEE Signal Process. Lett., 20, № 8, 2013, 823
- Sofie Therese Hansen, Lars Kai Hansen, “Spatio-temporal reconstruction of brain dynamics from EEG with a Markov prior”, NeuroImage, 148, 2017, 274
- J.D. Jakeman, M.S. Eldred, K. Sargsyan, “Enhancing ℓ1-minimization estimates of polynomial chaos expansions using basis selection”, Journal of Computational Physics, 289, 2015, 18
- Kai Labusch, Erhardt Barth, Thomas Martinetz, “Sparse Coding Neural Gas: Learning of overcomplete data representations”, Neurocomputing, 72, № 7-9, 2009, 1547