10 citations to https://www.mathnet.ru/eng/vuu700
-
Gulmirza Kh. Khudaiberganov, Kutlimurot S. Erkinboev, “Some properties of the automorphisms of the classical domain of the first type in the space $\mathbb{C}\left[ m\times n \right]$”, Zhurn. SFU. Ser. Matem. i fiz., 17:3 (2024), 295–303
-
A. Abdukarimov, U. S. Rakhmonov, F. Z. Turaev, THE THIRD INTERNATIONAL SCIENTIFIC CONFERENCE CONSTRUCTION MECHANICS, HYDRAULICS AND WATER RESOURCES ENGINEERING (CONMECHYDRO 2021 AS), 2612, THE THIRD INTERNATIONAL SCIENTIFIC CONFERENCE CONSTRUCTION MECHANICS, HYDRAULICS AND WATER RESOURCES ENGINEERING (CONMECHYDRO 2021 AS), 2023, 030017
-
U. S. Rakhmonov, A. Abdukarimov, Sh. Rajabov, THE THIRD INTERNATIONAL SCIENTIFIC CONFERENCE CONSTRUCTION MECHANICS, HYDRAULICS AND WATER RESOURCES ENGINEERING (CONMECHYDRO 2021 AS), 2612, THE THIRD INTERNATIONAL SCIENTIFIC CONFERENCE CONSTRUCTION MECHANICS, HYDRAULICS AND WATER RESOURCES ENGINEERING (CONMECHYDRO 2021 AS), 2023, 030016
-
Uktam S. Rakhmonov, Jonibek Sh. Abdullayev, “On properties of the second type matrix ball $B_{m,n}^{(2)}$ from space ${\mathbb C}^{n}[m\times m]$”, Zhurn. SFU. Ser. Matem. i fiz., 15:3 (2022), 329–342
-
U. S. Rakhmonov, Z. K. Matyakubov, “Carleman's formula for the matrix domains of Siegel”, Chebyshevskii sb., 23:4 (2022), 126–135
-
G. Khudayberganov, J. Sh. Abdullayev, “Holomorphic continuation into a matrix ball of functions defined on a piece of its skeleton”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 31:2 (2021), 296–310
-
Gulmirza Kh. Khudayberganov, Jonibek Sh. Abdullayev, “Laurent-Hua Loo-Keng series with respect to the matrix ball from space ${{\mathbb{C}}^{n}}\left[ m\times m \right]$”, Zhurn. SFU. Ser. Matem. i fiz., 14:5 (2021), 589–598
-
J. Sh. Abdullayev, “Estimates the Bergman kernel for classical domains É. Cartan's”, Chebyshevskii sb., 22:3 (2021), 20–31
-
Gulmirza Kh. Khudayberganov, Jonibek Sh. Abdullayev, “Relationship between the Bergman and Cauchy-Szegö in the domains $\tau ^{+}(n-1)$ i $\Re _{IV}^{n}$”, Zhurn. SFU. Ser. Matem. i fiz., 13:5 (2020), 559–567
-
Jonibek Sh. Abdullayev, “An analogue of Bremermann's theorem on finding the Bergman kernel for the Cartesian product of the classical domains ${{\Re }_{I}}\left( m,k \right)$ and ${{\Re }_{II}}\left( n \right)$”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2020, no. 3, 88–96