10 citations to https://www.mathnet.ru/eng/vuu700
  1. Gulmirza Kh. Khudaiberganov, Kutlimurot S. Erkinboev, “Some properties of the automorphisms of the classical domain of the first type in the space $\mathbb{C}\left[ m\times n \right]$”, Zhurn. SFU. Ser. Matem. i fiz., 17:3 (2024), 295–303  mathnet
  2. A. Abdukarimov, U. S. Rakhmonov, F. Z. Turaev, THE THIRD INTERNATIONAL SCIENTIFIC CONFERENCE CONSTRUCTION MECHANICS, HYDRAULICS AND WATER RESOURCES ENGINEERING (CONMECHYDRO 2021 AS), 2612, THE THIRD INTERNATIONAL SCIENTIFIC CONFERENCE CONSTRUCTION MECHANICS, HYDRAULICS AND WATER RESOURCES ENGINEERING (CONMECHYDRO 2021 AS), 2023, 030017  crossref
  3. U. S. Rakhmonov, A. Abdukarimov, Sh. Rajabov, THE THIRD INTERNATIONAL SCIENTIFIC CONFERENCE CONSTRUCTION MECHANICS, HYDRAULICS AND WATER RESOURCES ENGINEERING (CONMECHYDRO 2021 AS), 2612, THE THIRD INTERNATIONAL SCIENTIFIC CONFERENCE CONSTRUCTION MECHANICS, HYDRAULICS AND WATER RESOURCES ENGINEERING (CONMECHYDRO 2021 AS), 2023, 030016  crossref
  4. Uktam S. Rakhmonov, Jonibek Sh. Abdullayev, “On properties of the second type matrix ball $B_{m,n}^{(2)}$ from space ${\mathbb C}^{n}[m\times m]$”, Zhurn. SFU. Ser. Matem. i fiz., 15:3 (2022), 329–342  mathnet  crossref  mathscinet
  5. U. S. Rakhmonov, Z. K. Matyakubov, “Carleman's formula for the matrix domains of Siegel”, Chebyshevskii sb., 23:4 (2022), 126–135  mathnet  crossref
  6. G. Khudayberganov, J. Sh. Abdullayev, “Holomorphic continuation into a matrix ball of functions defined on a piece of its skeleton”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 31:2 (2021), 296–310  mathnet  crossref
  7. Gulmirza Kh. Khudayberganov, Jonibek Sh. Abdullayev, “Laurent-Hua Loo-Keng series with respect to the matrix ball from space ${{\mathbb{C}}^{n}}\left[ m\times m \right]$”, Zhurn. SFU. Ser. Matem. i fiz., 14:5 (2021), 589–598  mathnet  crossref
  8. J. Sh. Abdullayev, “Estimates the Bergman kernel for classical domains É. Cartan's”, Chebyshevskii sb., 22:3 (2021), 20–31  mathnet  crossref
  9. Gulmirza Kh. Khudayberganov, Jonibek Sh. Abdullayev, “Relationship between the Bergman and Cauchy-Szegö in the domains $\tau ^{+}(n-1)$ i $\Re _{IV}^{n}$”, Zhurn. SFU. Ser. Matem. i fiz., 13:5 (2020), 559–567  mathnet  crossref
  10. Jonibek Sh. Abdullayev, “An analogue of Bremermann's theorem on finding the Bergman kernel for the Cartesian product of the classical domains ${{\Re }_{I}}\left( m,k \right)$ and ${{\Re }_{II}}\left( n \right)$”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2020, no. 3, 88–96  mathnet