14 citations to https://www.mathnet.ru/eng/vmj99
  1. Erkursun-ozcan N., Mukhamedov F., “Stability Estimates of Markov Semigroups on Abstract States Spaces”, Mediterr. J. Math., 17:2 (2020), 44  crossref  mathscinet  zmath  isi  scopus
  2. Erkursun-Ozcan N. Gezer N.A., “Unbounded Asymptotic Equivalences of Operator Nets With Applications”, Positivity, 23:4 (2019), 829–851  crossref  mathscinet  zmath  isi  scopus
  3. Ozcan N.E., “On Ergodic Properties of Operator Nets on the Predual of Von Neumann Algebras”, Stud. Sci. Math. Hung., 55:4 (2018), 479–486  crossref  mathscinet  zmath  isi  scopus
  4. Erkursun-Ozcan N., “Asymptotic Behavior of Operator Sequences on Kb-Spaces”, Positivity, 22:3 (2018), 803–814  crossref  mathscinet  zmath  isi  scopus
  5. Ozcan N.E., Mukhamedov F., “Uniform Ergodicity of Lotz-Rabiger Nets of Markov Operators on Abstract State Spaces”, Results Math., 73:1 (2018), UNSP 35  crossref  mathscinet  isi  scopus
  6. Bartoszek W., Spiewak A., “A Note on a Wiener-Wintner Theorem For Mean Ergodic Markov Amenable Semigroups”, Proc. Amer. Math. Soc., 145:7 (2017), 2997–3003  crossref  mathscinet  zmath  isi  scopus
  7. Ozcan N.E., Mukhamedov F., 37Th International Conference on Quantum Probability and Related Topics (Qp37), Journal of Physics Conference Series, 819, eds. Accardi L., Mukhamedov F., Hee P., IOP Publishing Ltd, 2017  crossref  mathscinet  isi  scopus
  8. Glueck J., “On the Peripheral Spectrum of Positive Operators”, Positivity, 20:2 (2016), 307–336  crossref  mathscinet  zmath  isi  scopus
  9. Ozcan N.E., “Quasi-Compactness and Uniform Convergence of Markov Operator Nets on Kb-Spaces”, Ordered Structures and Applications, Trends in Mathematics, eds. DeJeu M., DePagter B., VanGaans O., Veraar M., Birkhauser Verlag Ag, 2016, 171–178  crossref  isi
  10. A. V. Romanov, “Weak${}^*$ convergence of operator means”, Izv. Math., 75:6 (2011), 1165–1183  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
1
2
Next