20 citations to https://www.mathnet.ru/eng/tm3428
  1. V. I. Buslaev, “Capacity of a compact set in a logarithmic potential field”, Proc. Steklov Inst. Math., 290:1 (2015), 238–255  mathnet  crossref  crossref  isi  elib  elib
  2. S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation”, Russian Math. Surveys, 70:5 (2015), 901–951  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  3. V. I. Buslaev, “An analogue of Polya's theorem for piecewise holomorphic functions”, Sb. Math., 206:12 (2015), 1707–1721  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
  4. V. I. Buslaev, S. P. Suetin, “Existence of compact sets with minimum capacity in problems of rational approximation of multivalued analytic functions”, Russian Math. Surveys, 69:1 (2014), 159–161  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  5. R. K. Kovacheva, S. P. Suetin, “Distribution of zeros of the Hermite–Padé polynomials for a system of three functions, and the Nuttall condenser”, Proc. Steklov Inst. Math., 284 (2014), 168–191  mathnet  crossref  crossref  isi  elib  elib
  6. A. V. Komlov, S. P. Suetin, “Strong asymptotics of two-point Padé approximants for power-like multivalued functions”, Dokl. Math., 89:2 (2014), 165–168  mathnet  crossref  crossref  mathscinet  zmath  isi  isi  elib  elib  scopus
  7. V. I. Buslaev, S. P. Suetin, “An extremal problem in potential theory”, Russian Math. Surveys, 69:5 (2014), 915–917  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  8. V. I. Buslaev, “Convergence of multipoint Padé approximants of piecewise analytic functions”, Sb. Math., 204:2 (2013), 190–222  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  9. E. A. Rakhmanov, S. P. Suetin, “The distribution of the zeros of the Hermite-Padé polynomials for a pair of functions forming a Nikishin system”, Sb. Math., 204:9 (2013), 1347–1390  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  10. A. V. Komlov, S. P. Suetin, “An asymptotic formula for a two-point analogue of Jacobi polynomials”, Russian Math. Surveys, 68:4 (2013), 779–781  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
Previous
1
2