25 citations to https://www.mathnet.ru/eng/smj4971
  1. G. A. Akishev, “O poryadkakh $n$-chlennykh priblizhenii funktsii mnogikh peremennykh v prostranstve Lorentsa”, Materialy Voronezhskoi mezhdunarodnoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy», Voronezh, 27 yanvarya — 1 fevralya 2023 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 227, VINITI RAN, M., 2023, 3–19  mathnet  crossref
  2. Fedunyk-Yaremchuk O.V. Hembars'Kyi M.V. Hembars'Ka S.B., “Approximative Characteristics of the Nikol'Skii-Besov-Type Classes of Periodic Functions in the Space B-Infinity,B-1”, Carpathian Math. Publ., 12:2 (2020), 376–391  crossref  mathscinet  zmath  isi  scopus
  3. Najafov A.M. Babayev R.F., “on Embeddings of Grand Grand Sobolev-Morrey Spaces With Dominant Mixed Derivatives”, Tbil. Math. J., 13:1, SI (2020), 1–10  mathscinet  zmath  isi
  4. M. K. Potapov, B. V. Simonov, “Estimates for mixed moduli of smoothness in $L_q$ metric via mixed moduli of smoothness in $L_1$ metric”, Moscow University Mathematics Bulletin, 73:2 (2018), 50–63  mathnet  crossref  mathscinet  zmath  isi
  5. K. V. Runovskii, N. V. Omel'chenko, “Mixed Generalized Modulus of Smoothness and Approximation by the “Angle” of Trigonometric Polynomials”, Math. Notes, 100:3 (2016), 448–457  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
  6. G. A. Akishev, “On approximation orders of functions of several variables in the Lorentz space”, Proc. Steklov Inst. Math. (Suppl.), 300, suppl. 1 (2018), 9–24  mathnet  crossref  crossref  mathscinet  isi  elib
  7. Sh. A. Balgimbayeva, “Nonlinear approximation of function spaces of mixed smoothness”, Siberian Math. J., 56:2 (2015), 262–274  mathnet  crossref  mathscinet  isi  elib
  8. G. A. Akishev, “Estimates for Kolmogorov widths of the Nikol'skii — Besov — Amanov classes in the Lorentz space”, Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 1–12  mathnet  crossref  mathscinet  isi  elib
  9. T. F. Ismagilov, “Embedding theorem of different metrics for a generalized Nikol'skii class”, Moscow University Mathematics Bulletin, 70:4 (2015), 176–180  mathnet  crossref  mathscinet  isi
  10. T. F. Ismagilov, “Embedding theorems of different metrics for classes of functions with dominant mixed modulus of smoothness”, Moscow University Mathematics Bulletin, 69:2 (2014), 81–83  mathnet  crossref  mathscinet
1
2
3
Next