16 citations to https://www.mathnet.ru/eng/sigma841
  1. G. Kulkarni, N. A. Slavnov, “Action of the monodromy matrix elements in the generalized algebraic Bethe ansatz”, Theoret. and Math. Phys., 217:3 (2023), 1889–1906  mathnet  crossref  crossref  mathscinet  adsnasa
  2. Liashyk A., Pakuliak S.Z., “Recurrence Relations For Off-Shell Bethe Vectors in Trigonometric Integrable Models”, J. Phys. A-Math. Theor., 55:7 (2022), 075201  crossref  mathscinet  isi
  3. A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products and norm of Bethe vectors for integrable models based on $U_q(\widehat{\mathfrak{gl}}_n)$”, SciPost Phys., 4:1 (2018), 006  crossref  isi
  4. Stanislav Pakuliak, Eric Ragoucy, Nikita Slavnov, “Nested Algebraic Bethe Ansatz in integrable models: recent results”, SciPost Phys. Lect. Notes, 2018  crossref
  5. A. A. Hutsalyuk, A. Liashyk, S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Current presentation for the super-Yangian double $DY(\mathfrak{gl}(m|n))$ and Bethe vectors”, Russian Math. Surveys, 72:1 (2017), 33–99  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  6. Jan Fuksa, “Bethe Vectors for Composite Models with $\mathfrak{gl}(2|1)$ and $\mathfrak{gl}(1|2)$ Supersymmetry”, SIGMA, 13 (2017), 015, 17 pp.  mathnet  crossref
  7. N. Gromov, F. Levkovich-Maslyuk, G. Sizov, “New construction of eigenstates and separation of variables for $\mathrm{SU}(N)$ quantum spin chains”, J. High Energy Phys., 2017, no. 9, 111  crossref  mathscinet  zmath  isi  scopus
  8. Hao K., Cao J., Li G.-L., Yang W.-L., Shi K., Wang Yu., “A representation basis for the quantum integrable spin chain associated with the su(3) algebra”, J. High Energy Phys., 2016, no. 5, 119  crossref  mathscinet  zmath  isi  elib  scopus
  9. Kozlowski K.K. Ragoucy E., “Asymptotic behaviour of two-point functions in multi-species models”, Nucl. Phys. B, 906 (2016), 241–288  crossref  mathscinet  zmath  isi  elib  scopus
  10. Slavnov N.A., “Scalar Products in Gl(3)-Based Models With Trigonometric R-Matrix. Determinant Representation”, J. Stat. Mech.-Theory Exp., 2015, P03019  crossref  mathscinet  isi  elib  scopus
1
2
Next