16 citations to https://www.mathnet.ru/eng/sigma841
-
G. Kulkarni, N. A. Slavnov, “Action of the monodromy matrix elements in the generalized algebraic Bethe ansatz”, Theoret. and Math. Phys., 217:3 (2023), 1889–1906
-
Liashyk A., Pakuliak S.Z., “Recurrence Relations For Off-Shell Bethe Vectors in Trigonometric Integrable Models”, J. Phys. A-Math. Theor., 55:7 (2022), 075201
-
A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products and norm of Bethe vectors for integrable models based on $U_q(\widehat{\mathfrak{gl}}_n)$”, SciPost Phys., 4:1 (2018), 006
-
Stanislav Pakuliak, Eric Ragoucy, Nikita Slavnov, “Nested Algebraic Bethe Ansatz in integrable models: recent results”, SciPost Phys. Lect. Notes, 2018
-
A. A. Hutsalyuk, A. Liashyk, S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Current presentation for the super-Yangian double $DY(\mathfrak{gl}(m|n))$ and Bethe vectors”, Russian Math. Surveys, 72:1 (2017), 33–99
-
Jan Fuksa, “Bethe Vectors for Composite Models with $\mathfrak{gl}(2|1)$ and $\mathfrak{gl}(1|2)$ Supersymmetry”, SIGMA, 13 (2017), 015, 17 pp.
-
N. Gromov, F. Levkovich-Maslyuk, G. Sizov, “New construction of eigenstates and separation of variables for $\mathrm{SU}(N)$ quantum spin chains”, J. High Energy Phys., 2017, no. 9, 111
-
Hao K., Cao J., Li G.-L., Yang W.-L., Shi K., Wang Yu., “A representation basis for the quantum integrable spin chain associated with the su(3) algebra”, J. High Energy Phys., 2016, no. 5, 119
-
Kozlowski K.K. Ragoucy E., “Asymptotic behaviour of two-point functions in multi-species models”, Nucl. Phys. B, 906 (2016), 241–288
-
Slavnov N.A., “Scalar Products in Gl(3)-Based Models With Trigonometric R-Matrix. Determinant Representation”, J. Stat. Mech.-Theory Exp., 2015, P03019