14 citations to https://www.mathnet.ru/eng/sigma739
  1. Sergey V Smirnov, “Integral preserving discretization of 2D Toda lattices”, J. Phys. A: Math. Theor., 56:26 (2023), 265204  crossref
  2. Yue Yin, Wei Fu, “Integrable semi-discretisation of the Drinfel'd–Sokolov hierarchies”, Nonlinearity, 35:7 (2022), 3324  crossref
  3. D. V. Millionshchikov, S. V. Smirnov, “Characteristic algebras and integrable exponential systems”, Ufa Math. J., 13:2 (2021), 41–69  mathnet  crossref  isi
  4. Habibullin I. Khakimova A., “Integrable Boundary Conditions For the Hirota-Miwa Equation and Lie Algebras”, J. Nonlinear Math. Phys., 27:3 (2020), 393–413  crossref  mathscinet  isi  scopus
  5. Habibullin I.T., Khakimova A.R., “Discrete Exponential Type Systems on a Quad Graph, Corresponding to the Affine Lie Algebras a(N)(-1)((1) )”, J. Phys. A-Math. Theor., 52:36 (2019), 365202  crossref  mathscinet  isi  scopus
  6. W. Fu, “Direct linearisation of the discrete-time two-dimensional Toda lattices”, J. Phys. A-Math. Theor., 51:33 (2018), 334001  crossref  mathscinet  isi  scopus
  7. I. T. Habibullin, A. R. Khakimova, “A direct algorithm for constructing recursion operators and Lax pairs for integrable models”, Theoret. and Math. Phys., 196:2 (2018), 1200–1216  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
  8. I. T. Habibullin, A. R. Khakimova, “Invariant manifolds and Lax pairs for integrable nonlinear chains”, Theoret. and Math. Phys., 191:3 (2017), 793–810  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
  9. I. T. Habibullin, A. R. Khakimova, “On a method for constructing the Lax pairs for integrable models via a quadratic ansatz”, J. Phys. A-Math. Theor., 50:30 (2017), 305206  crossref  mathscinet  zmath  isi  scopus
  10. Demskoi D.K., Tran D.T., “Darboux integrability of determinant and equations for principal minors”, Nonlinearity, 29:7 (2016), 1973–1991  crossref  mathscinet  zmath  isi  elib  scopus
1
2
Next