15 citations to https://www.mathnet.ru/eng/sigma550
  1. Ufa Math. J., 13:2 (2021), 160–169  mathnet  crossref  isi
  2. R. N. Garifullin, R. I. Yamilov, “Modified series of integrable discrete equations on a quadratic lattice with a nonstandard symmetry structure”, Theoret. and Math. Phys., 205:1 (2020), 1264–1278  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
  3. Grammaticos B., Ramani A., “Gambier Lattices and Other Linearisable Systems”, J. Nonlinear Math. Phys., 27:4 (2020), 688–696  crossref  mathscinet  isi
  4. Garifullin R.N. Gubbiotti G. Yamilov I R., “Integrable Discrete Autonomous Quad-Equations Admitting, as Generalized Symmetries, Known Five-Point Differential-Difference Equations”, J. Nonlinear Math. Phys., 26:3 (2019), 333–357  crossref  mathscinet  isi  scopus
  5. Rustem N. Garifullin, Ravil I. Yamilov, “Integrable Modifications of the Ito–Narita–Bogoyavlensky Equation”, SIGMA, 15 (2019), 062, 15 pp.  mathnet  crossref
  6. Ufa Math. J., 11:3 (2019), 99–108  mathnet  crossref  isi
  7. Gubbiotti, G.; Levi, D.l Scimiterna, C., “On partial differential and difference equations with symmetries depending on arbitrary functions”, Acta Polytechnica, 56:3 (2016), 193-201  crossref  scopus
  8. Garifullin R.N. Yamilov R.I., “Integrable Discrete Nonautonomous Quad-Equations as Backlund Auto-Transformations For Known Volterra and Toda Type Semidiscrete Equations”, Seventh International Workshop: Group Analysis of Differential Equations and Integrable Systems (Gadeisvii), Journal of Physics Conference Series, 621, IOP Publishing Ltd, 2015, UNSP 012005  crossref  isi  scopus
  9. Sergey Ya. Startsev, “Non-Point Invertible Transformations and Integrability of Partial Difference Equations”, SIGMA, 10 (2014), 066, 13 pp.  mathnet  crossref  mathscinet
  10. Startsev S.Ya., “Darboux Integrable Discrete Equations Possessing an Autonomous First-Order Integral”, J. Phys. A-Math. Theor., 47:10 (2014), 105204  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
1
2
Next