20 citations to https://www.mathnet.ru/eng/semr198
  1. Ugurlu P., “Pseudofinite Groups as Fixed Points in Simple Groups of Finite Morley Rank”, J. Pure Appl. Algebr., 217:5 (2013), 892–900  crossref  mathscinet  zmath  isi  elib
  2. E. I. Timoshenko, “Quasivarieties generated by partially commutative groups”, Siberian Math. J., 54:4 (2013), 722–730  mathnet  crossref  mathscinet  isi
  3. Casals-Ruiz M., Kazachkov I., On systems of equations over free partially commutative groups, Mem. Amer. Math. Soc., 212, no. 999, 2011  crossref  mathscinet  isi  elib
  4. Casals-Ruiz M., Kazachkov I.V., “Elements of algebraic geometry and the positive theory of partially commutative groups”, Canad. J. Math., 62:3 (2010), 481–519  crossref  mathscinet  zmath  isi  elib
  5. Ch. K. Gupta, E. I. Timoshenko, “Partially commutative metabelian groups: centralizers and elementary equivalence”, Algebra and Logic, 48:3 (2009), 173–192  mathnet  crossref  mathscinet  zmath  isi
  6. Kambites M., “On commuting elements and embeddings of graph groups and monoids”, Proc. Edinb. Math. Soc. (2), 52:1 (2009), 155–170  crossref  mathscinet  zmath  isi
  7. Khukhro E.I., “On solubility of groups with bounded centralizer chains”, Glasg. Math. J., 51:1 (2009), 49–54  crossref  mathscinet  zmath  isi  elib
  8. A. J. Duncan, I. V. Kazachkov, V. N. Remeslennikov, “Orthogonal systems in finite graphs”, Sib. elektron. matem. izv., 5 (2008), 151–176  mathnet  mathscinet
  9. Vaes S., “Explicit computations of all finite index bimodules for a family of II$_1$ factors”, Ann. Sci. Éc. Norm. Supér. (4), 41:5 (2008), 743–788  crossref  mathscinet  zmath  isi
  10. Blatherwick V.A., “Centraliser dimension of free partially commutative nilpotent groups of class 2”, Glasg. Math. J., 50:2 (2008), 251–269  crossref  mathscinet  zmath  isi  elib
Previous
1
2